Skip to main content

Computation of Vortex-Shedding Flows Past a Square Cylinder Employing LES and RANS

  • Chapter
Numerical Flow Simulation I

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NNFM,volume 66))

  • 311 Accesses

Summary

The paper addresses the predictive capabilities of different computational modelling practices which employ various eddy-viscosity models for turbulence, that are based on a linear, a quadratic and two cubic representations of the Reynolds stress tensor in terms of strain and vorticity rates respectively, in the context of a comparative study between Reynolds-Averaged Navier-Stokes Equations and Large Eddy Simulation of vortex-shedding flows. The test case considered here refers to the familiar vortex-shedding flow past a square cylinder at Re = 22.000 studied experimentally by Lyn et al.. All the models were found to reproduce fairly well the shedding dynamics with the exception of eddy-viscosity models employed with a high rate of oncoming turbulence. The total kinetic energy was fairly well predicted by all models, whereas the turbulent part was significantly underestimated. Comparison of this latter quantity has emphasized the effective role of turbulence anisotropy in rendering the effects of shedding mechanisms. The integral parameters were determined with much better agreement with measurements than the averaged quantities. The essential finding is that the explicit algebraic stress models predict much better the global parameters with increasing the order of anisotropy. The confusing results of Large Eddy Simulation, i.e. satisfactory agreements of the time-averaged velocity and energy profiles to the expense of a less accurate prediction of the global coefficients, did not support the superiority of the concept. Still, the practice has revealed a particular sentivity to the near-wall treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bosch, G.: Experimentelle and theoretische Untersuchung der instationären Strömung um zjlindrische Strukturen Strukturen, Ph.D Thesis, University of Karlsruhe, (1995).

    Google Scholar 

  2. Franke R., Rodi W.: Calculation of vortex shedding past a square cylinder with various turbulence models, in Turb. Shear Flows 8, Durst et al. ( Eds. ), Springer Verlag, (1993).

    Google Scholar 

  3. Kawamura, H., Kawashima, N.: An Application of a near Wall k — ε model to the Turbulent Channel Flow with Transpiration and to the Oscillatory Flow around a Square Cylinder, Proc. 2nd Symp. Turbulent Heat Mass Transfer, Delft (1997).

    Google Scholar 

  4. Kato, M., Launder, B.E.: The Modeling of Turbulent Flow around Stationary and Vibrating Square Cylinders, Proc. Turb. Shear Flows 9, Kyoto, 10–4–1 (1993).

    Google Scholar 

  5. Rodi W., Ferziger, J., Breuer M., Pourquier M.: Status of Large Eddy Simulation. Results of a Workshop, J. Fluid Mech., 119, pp. 248–262, (1997).

    Google Scholar 

  6. Lyn, D.A., Einav, S., Rodi, W., Park.. J.H.: A Laser-Doppler Velocimetry Study of Ensemble-averaged Characteristics of the Turbulent Near Wake of a Square Cylinder, J. Fluid Mech., 304, pp. 285–319, (1995).

    Article  Google Scholar 

  7. Breuer, M., Lakehal, D., Rodi, W. Flow Around a Surface Mounted Cubical Obstacle: Comparison of LES and RANS-Results, in Notes of Numerical Fluid Mech., Vieweg Verlag, 53, pp. 22–30, (1996).

    Google Scholar 

  8. Reynolds, W.C., Hussein, A.K.M.F.: The mechanisms of an Organized wave in Turbulent Shear Flow. Part 3. Theoritical Models and Comparisons with Experiments, J. Fluid Mech., 54, pp. 263–288, (1972)

    Article  Google Scholar 

  9. Gatski, T. B., Speziale, C. G.: On explicit algebraic stress models for complex turbulent flows, J. Fluid Mech., 254, pp. 59–78, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  10. Speziale, C. G., Sarkar, S., Gatski, T. B.: Modelling the presure-strain correlation of turbulence: an invariant dynamical systems approch, J. Fluid Mech., 227, pp. 245–272, (1991).

    Article  MATH  Google Scholar 

  11. Rung, T. Private communication, Hermann Föttinger Institute, TU-Berlin, Germany (1998).

    Google Scholar 

  12. Lien, F.S., Leschziner, M.A.: Computational Modelling of 3D Turbulent Flow in S-Diffuser and Transition Ducts, Eng. Turbulence Modelling and Experiments 2, Elsevier Sce. Pub. (1993).

    Google Scholar 

  13. Lien, F.S., Chen, W.L., Leschziner, M.A.: Low-Reynolds-Number Eddy-viscosity modelling based on nonlinear stress-strain/vorticity relations, Proc. 3rd Int. Symposium of Engineering Turbulence Modeling and Measurements, Crete, Greece (1996).

    Google Scholar 

  14. Suga, K. Eddy-viscosity modelling with deformation invariants and non-linear elements, First year Ph.D report, Dept. Mech. Eng., UMIST, (1993).

    Google Scholar 

  15. Shill, T.H., Zhu, J., Lumley, J.L.: A realisable Reynolds stress algebraic equation model, NASA TM-105993, (1993)

    Google Scholar 

  16. Norris, L.H., Reynolds,W.C.: Turbulent channel flow with a mooving wavy boundary, Rept. No. FM-10, Stanford University, Dept. Mech. Eng., (1975).

    Google Scholar 

  17. Craft, T.J., Launder, B.E., Suga, K. Extending the applicability of eddy-viscosity models through tie use of deformation invariants and non-linear elements, Proc. 5th Int. Symp. Refined Flow Modelling and Turbulence Measurements, Paris (1993).

    Google Scholar 

  18. Launder, B.E., Sharma, B.: Application of the energy dissipation model of turbulence for the calculation of flow near a spinning disc, Lett. Heat Mass Transfer, 1, pp. 131–138, (1974).

    Article  Google Scholar 

  19. Craft, T.J., Launder, B.E., Suga, K.: Development and application of a cubic eddy-viscosity model of turbulence, Int. J. Heat and Fluid Flow, 17, pp. 108–115, (1996).

    Article  Google Scholar 

  20. Shih, T.H., Zhu, J., Lumley, J.L.: A New Reynolds stress algebraic equation model, Comput. Methods Appl. Mech. Engrg., 125, pp. 287–302, (1995).

    Article  Google Scholar 

  21. Abe K., Kondoh T., Nagano, Y. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows-I. Flow field calculations, Int. J. Heat Mass Transfer, 37, 1, 139–151, (1994).

    Article  MATH  Google Scholar 

  22. Wolfshtein, M. The velocity and temperature distribution in one-dimensional low with turbulence augmentation and pressure gradient, Int. J. Heat Mass Transfer, 12, pp. 301–318, (1969).

    Article  Google Scholar 

  23. Jones, W.P., Launder, B. E. Prediction of relaminarization with a two-equation turbulence model, Int. J. Heat Mass Transfer, 15, pp. 301–314, (1972).

    Article  Google Scholar 

  24. Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H.: A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A. 3 (7), pp. 1760–1765, (1991).

    Article  MATH  Google Scholar 

  25. Smagorinsky, J.: General circulation experiments with the primitive equations, I, The basic experiment, Mon. Weather Rev. 91, pp. 99–165, (1963).

    Article  Google Scholar 

  26. Duchmrp de Lageneste, L., Buffat, M., Leribault, C. Development of large eddy simulation methods on unstnu:tured grids, Internal Report 22 pp., LMFA, Ecole Centrale de Lyon, France (1997).

    Google Scholar 

  27. Rhic, C.M., Chow, W.L.: Numerical study of the turbulent flow past an isolated airfoil with trailing edgescparation, AIAA-.J., 21, pp. 1225–1532, (1983).

    Google Scholar 

  28. Stone, H.L.: Iterative solution of implicit approximations of multidimensional partial differential equations, SIAM J. on Num. Anal., 5, pp. 530–558, (1968).

    Article  MATH  Google Scholar 

  29. Dervieux, A. Steady Euler flow simulation using unstructured meshes, VKI L. Series 1884–04, (1985).

    Google Scholar 

  30. Steve, H.: Schémas implicites linéaires décentrés pour la resolution des équations d’Euler en plusieurs dimensions, Thèse Université de Provence Aix-Marseille 1, (1988).

    Google Scholar 

  31. Werner, H., Wengle, H. Large-Eddy Simulation of Turbulent Flow over and around a Cube in a plate Channel, Proc. 8th Symp. Turb. Shear Flows, Stuttgart, Springer Verlag, (1993).

    Google Scholar 

  32. Deng, D.W., Piquet, J., Queutey, P., Visonneau, M. Vortex-shedding flow predictions with eddy-viscosity models, Engug. Turbulence Modelling amp; Measurements 2, Elsevier, pp. 143–152, (1993).

    Google Scholar 

  33. Lakehal, D. Computation of vortex shedding past bluff bodies employing statistical turbulence models, Institutesbericht 02–1998, Hermann Föttinger Institute, TU-Berlin, Germany (1998).

    Google Scholar 

  34. Lakehal, D., Rodi, W. Calculation of the Flow Past a Surface-Mounted Cube with Two-Layer Turbulence Models, J. Wind Eng. Ind. Aerod., 67–68, pp. 65–78, (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Lakehal, D., Thiele, F., de Lageneste, L.D., Buffat, M. (1998). Computation of Vortex-Shedding Flows Past a Square Cylinder Employing LES and RANS. In: Hirschel, E.H. (eds) Numerical Flow Simulation I. Notes on Numerical Fluid Mechanics (NNFM), vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44437-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44437-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53590-1

  • Online ISBN: 978-3-540-44437-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics