Skip to main content

Part of the book series: ADVANCED MICROELECTRONICS ((MICROELECTR.,volume 26))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trenta-coste, A. Ghosh, and A. Vorozcovs. High dynamic range display systems. ACM Transactions on Graphics, 23(3), 2004

    Google Scholar 

  2. B. A. Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA, 1995

    Google Scholar 

  3. J. Tumblin and H. E. Rushmeier. Tone reproduction for realistic images. IEEE Computer Graphics and Applications, 13(6):42-48, November 1993

    Article  Google Scholar 

  4. G. Ward. A contrast-based scalefactor for luminance display. Graphics Gems IV, pages 415-421, 1994

    Google Scholar 

  5. J. A. Ferwerda, S. Pattanaik, P. S. Shirley, and D. P. Greenberg. A model of visual adaptation for realistic image synthesis. In Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series, pages 249-258, August 1996

    Google Scholar 

  6. S. N. Pattanaik, J. E. Tumblin, H. Yee, and D. P. Greenberg. Time-dependent visual adaptation for realistic image display. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, pages 47-54, July 2000

    Google Scholar 

  7. E. Reinhard and K. Devlin. Dynamic range reduction inspired by photoreceptor physiology. IEEE Transactions on Visualization and Computer Graphics, 11(1):13-24, 2005

    Article  Google Scholar 

  8. T. G. Stockham. Image processing in the context of a visual model. Proceedings of the IEEE, 13(6):828-842, 1960

    Google Scholar 

  9. F. Drago, K. Myszkowski, T. Annen, and N. Chiba. Adaptive logarithmic map-ping for displaying high contrast scenes. Computer Graphics Forum, Proceedings of Eurographics 2003, 22(3):419-426, 2003

    Article  Google Scholar 

  10. K. Perlin and E. M. Hoffert. Hypertexture. In Computer Graphics (Proceedings of SIGGRAPH 89), Vol. 23, pages 253-262, July 1989.

    Article  Google Scholar 

  11. A. Yoshida, V. Blanz, K. Myszkowski, and H. P. Seidel. Perceptual evaluation of tone mapping operators with real-world scenes. In B. E. Rogowitz, T. N. Pappas, and S. J. Daly, editors, Human Vision and Electronic Imaging X, IS&T/SPIE’s 17th Annual Symposium on Electronic Imaging (2005), volume 5666 of SPIE Proceedings Series, pages 192-203, San Jose, USA, 2005. SPIE

    Google Scholar 

  12. G. Ward Larson, H. Rushmeier, and C. Piatko. A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Transactions on Visualization and Computer Graphics, 3(4):291-306, 1997

    Article  Google Scholar 

  13. E. H. Land and J. J. McCann. Lightness and the retinex theory. Journal of the Optical Society of America, 61(1):1-11, 1971

    Article  Google Scholar 

  14. B. K. P. Horn. Determining lightness from an image. Computer Graphics and Image Processing, 3(1):277-299, 1974

    Article  Google Scholar 

  15. A. Hurlbert. Formal connections between lightness algorithms. Journal of the Optical Society of America A, 3(10):1684-1693, 1986

    Article  Google Scholar 

  16. J. DiCarlo and B. Wandell. Rendering high dynamic range images. In Proceed-ings of SPIE, Vol. 3965, pages 392-401, 2000

    Article  Google Scholar 

  17. E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photographic tone repro-duction for digital images. ACM Transactions on Graphics, 21(3):267-276, 2002

    Article  Google Scholar 

  18. E. Reinhard. Parameter estimation for photographic tone reproduction. Journal of Graphics Tools, 7(1):45-52, 2002

    MATH  MathSciNet  Google Scholar 

  19. M. Ashikhmin. A tone mapping algorithm for high contrast images. In Proceed-ings of the 13th Eurographics workshop on Rendering, pages 145-156, 2002

    Google Scholar 

  20. F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-dynamic-range images. ACM Transactions on Graphics, 21(3):257-266, 2002

    Article  Google Scholar 

  21. S. E. Palmer. Vision Science: Photons to Phenomenology, chapter 3. 3 Surface-Based Color Processing. MIT, Cambridge, MA, 1999

    Google Scholar 

  22. A. Gilchrist. Lightness contrast and failures of constancy: A common explanation. Perception & Psychophysics, 43:415-424, 1988

    Google Scholar 

  23. I. Rock. The Logic of Perception. MIT, Cambridge, MA, 1983

    Google Scholar 

  24. A. Gilchrist and J. Cataliotti. Anchoring of surface lightness with multpile illumination levels. Investigative Ophthamalmology and Visual Science, 35, 1994

    Google Scholar 

  25. A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spe-har, V. Annan, and E. Economou. An anchoring theory of lightness perception. Psychological Review, 106(4):795-834, 1999

    Article  Google Scholar 

  26. G. Krawczyk, M. Goesele, and H. P. Seidel. Photometric calibration of high dynamic range cameras. Research Report MPI-I-2005-4-005, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany, April 2005

    Google Scholar 

  27. G. Krawczyk, K. Myszkowski, and H. P. Seidel. Lightness perception in tone reproduction for high dynamic range images. In The European Association for Computer Graphics 26th Annual Conference EUROGRAPHICS 2005, volume 24 of Computer Graphics Forum, pages 635-646, Dublin, Ireland, 2005. Blackwell

    Google Scholar 

  28. D. J. Jobson, Z. Rahman, and G. A. Woodell. Properties and performance of a center/surround retinex. IEEE Transactions on Image Processing, 6(3):451-462, 1997

    Article  Google Scholar 

  29. R. Fattal, D. Lischinski, and M. Werman. Gradient domain high dynamic range compression. ACM Transactions on Graphics, 21(3):249-256, 2002

    Article  Google Scholar 

  30. R. Mantiuk, K. Myszkowski, and H. P. Seidel. A Perceptual framework for con-trast processing of high dynamic range images. In J. Koenderink and J. Malik, editors, Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization (APGV 2005). ACM, New York, 2005

    Google Scholar 

  31. P. Whittle. Increments and decrements: luminance discrimination. Vision Research, 26(10):1677-1691, 1986

    Article  Google Scholar 

  32. N. Goodnight, R. Wang, C. Woolley, and G. Humphreys. Interactive time-dependent tone mapping using programmable graphics hardware. In Render-ing Techniques 2003: 14th Eurographics Symposium on Rendering, pages 26-37, 2003

    Google Scholar 

  33. F. Durand and J. Dorsey. Interactive tone mapping. In Rendering Techniques 2000: 11th Eurographics Workshop on Rendering, pages 219-230, 2000

    Google Scholar 

  34. G. Spencer, P. Shirley, K. Zimmerman, and D. P. Greenberg. Physically-based glare effects for digital images. In Proceedings of ACM SIGGRAPH 95, pages 325-334, 1995

    Google Scholar 

  35. G. Spencer, P. S. Shirley, K. Zimmerman, and D. P. Greenberg. Physically-based glare effects for digital images. In Proceedings of ACM SIGGRAPH 95, Com-puter Graphics Proceedings, Annual Conference Series, pages 325-334, August 1995

    Google Scholar 

  36. R. W. G. Hunt. The Reproduction of Colour in Photography, Printing and Tele-vision: 5th Edition. Fountain, Tolworth 1995

    Google Scholar 

  37. S. Shaler. The relation between visual acuity and illumination. Journal of General Psychology, 21:165-188, 1937

    Google Scholar 

  38. R. J. Deeley, N. Drasdo, and W. N. Charman. A simple parametric model of the human ocular modulation transfer function. Ophthalmology and Physiological Optics, 11:91-93, 1991

    Article  Google Scholar 

  39. C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proceedings of the 1998 IEEE International Conference on Computer Vision, Bombay, India, pages 839-846, 1998

    Google Scholar 

  40. J. Tumblin and G. Turk. LCIS: A boundary hierarchy for detail-preserving contrast reduction. In Proceedings of ACM SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series, pages 83-90, 1999

    Google Scholar 

  41. P. Choudhury and J. Tumblin. The trilateral filter for high contrast images and meshes. In Rendering Techniques 2003: 14th Eurographics Symposium on Rendering, pages 186-196, 2003

    Google Scholar 

  42. E. P. Bennett and L. McMillan. Video enhancement using per-pixel virtual exposures. ACM Transactions on Graphics, 24(3): 765-776, 2005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Krawczyk, G., Myszkowski, K., Brosch, D. (2007). HDR Tone Mapping. In: Hoefflinger, B. (eds) High-Dynamic-Range (HDR) Vision. ADVANCED MICROELECTRONICS, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44433-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44433-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44432-9

  • Online ISBN: 978-3-540-44433-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics