Skip to main content

Towards a Statistical Geometrodynamics

  • Part II Gravity and Cosmology - Classical and Quantum Aspects
  • Chapter
  • First Online:
Decoherence and Entropy in Complex Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 633))

Abstract

Can the spatial distance between two identical particles be explained in terms of the extent that one can be distinguished from the other? Is the geometry of space a macroscopic manifestation of an underlying microscopic statistical structure? Is geometrodynamics derivable from general principles of inductive inference? Tentative answers are suggested by a model of geometrodynamics based on the statistical concepts of entropy, information geometry, and entropic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Hans-Thomas Elze

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Caticha, A. (2004). Towards a Statistical Geometrodynamics. In: Elze, HT. (eds) Decoherence and Entropy in Complex Systems. Lecture Notes in Physics, vol 633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40968-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40968-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20639-2

  • Online ISBN: 978-3-540-40968-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics