Skip to main content

Electroweak Baryogenesis and Primordial Hypermagnetic Fields

  • Part II Quintessence, Dark Energy, Dark Matter, and Other Topics
  • Chapter
  • First Online:
The Early Universe and Observational Cosmology

Part of the book series: Lecture Notes in Physics ((LNP,volume 646))

Abstract

The origin of the matter-antimatter asymmetry of the universe remains one of the outstanding questions yet to be answered by modern cosmology, and also one of only a handful of problems where the need of a larger number of degrees of freedom than those contained in the standard model (SM) is better illustrated. An appealing scenario for the generation of baryon number is the electroweak phase transition that took place when the temperature of the universe was about 100 GeV. Though in the minimal version of the SM, and without considering the interaction of the SM particles with additional degrees of freedom, this scenario has been ruled out given the current bounds for the Higgs mass, this still remains an open possibility in supersymmetric extensions of the SM. In recent years it has also been realized that large scale magnetic fields could be of primordial origin. A natural question is what effect, if any, these fields could have played during the electroweak phase transition in connection to the generation of baryon number. Prior to the electroweak symmetry breaking, the magnetic modes able to propagate for large distances belonged to the U(1) group of hypercharge and hence receive the name of hypermagnetic fields. In this contribution, we summarize recent work aimed to explore the effects that these fields could have introduced during a first order electroweak phase transition. In particular, we show how these fields induce a CP asymmetric scattering of fermions off the true vacuum bubbles nucleated during the phase transition. The segregated axial charge acts as a seed for the generation of baryon number. We conclude by mentioning possible research venues to further explore the effects of large scale magnetic fields for the generation of the baryon asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. A. D. Sakharov, Pis’ma Zh. Eksp. Teor. Fiz. 5, 32 (1967) [JETP Lett. 5, 24 (1967)].

    Google Scholar 

  • 2. M.B. Gavela, P. Hernández, J. Orloff, and O. Pène, Mod. Phys. Lett. A 9, 795 (1994).

    Google Scholar 

  • 3. K. Kajantie, M. Laine, K. Rummukainen, and M. Shaposnikov, Nucl. Phys. B 466, 189 (1996).

    Google Scholar 

  • 4. A. G. Cohen, D. B. Kaplan and A. E. Nelson, Phys. Lett. B 263, 86 (1991).

    Google Scholar 

  • 5. M. Carena, M. Quiros and C. E. Wagner, Nucl. Phys. B 524, 3 (1998).

    Google Scholar 

  • 6. J. M. Cline, Electroweak phase transition and baryogenesis, hep-ph/0201286.

    Google Scholar 

  • 7. M. Giovannini and M. E. Shaposhnikov, Phys. Rev. D 57, 2186 (1998).

    Google Scholar 

  • 8. P. Elmfors, K. Enqvist and K. Kainulainen, Phys. Lett. B 440, 269 (1998).

    Google Scholar 

  • 9. M. Giovannini, Primordial Magnetic Fields, hep-ph/0208152.

    Google Scholar 

  • 10. D. Comelli, D. Grasso, M. Pietroni and A. Riotto, Phys. Lett. B 458, 304 (1999).

    Google Scholar 

  • 11. M. E. Carrington, Phys. Rev. D 45, 2933 (1992).

    Google Scholar 

  • 12. A. Ayala, J. Besprosvany, G. Pallares and G. Piccinelli, Phys. Rev. D 64, 123529 (2001).

    Google Scholar 

  • 13. A. Ayala, G. Piccinelli and G. Pallares, Phys. Rev. D 66, 103503 (2002).

    Google Scholar 

  • 14. A. Ayala and J. Besprosvany, Nucl. Phys. B 651, 211 (2003).

    Google Scholar 

  • 15. A. E. Nelson, D. B. Kaplan and A. G. Cohen, Nucl. Phys. B 373, 453 (1992).

    Google Scholar 

  • 16. M. Trodden, Rev. Mod. Phys. 71, 1463 (1999).

    Google Scholar 

  • 17. A. Riotto and M. Trodden, Ann. Rev. Nucl. Part. Sci. 49, 35 (1999).

    Google Scholar 

  • 18. V. A. Rubakov and M. E. Shaposhnivov, Usp.Fiz.Nauk 166, 493 (1996), hep-ph/9603208.

    Google Scholar 

  • 19. E. W. Kolb and M. S. Turner: The Early Universe, (Addison–Wesley Publishing Company 1990).

    Google Scholar 

  • 20. F. W. Stecker: The matter-antimatter asymmetry of the universe. In: XIVth Rencontres de Blois 2002 on Matter-Antimatter Asymmetry, ed. by J. Tran Thanh Van, hep-ph/0207323.

    Google Scholar 

  • 21. A. D. Dolgov: Cosmological matter-antimatter asymmetry and antimatter in the universe. In: XIVth Rencontres de Blois 2002 on Matter-Antimatter Asymmetry, ed. by J. Tran Thanh Van, hep-ph/0211260.

    Google Scholar 

  • 22. F. R. Klinkhamer and N. S. Manton, Phys. Rev. D 30, 2212 (1984).

    Google Scholar 

  • 23. G. ‘t Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D 14, 3432 (1976).

    Google Scholar 

  • 24. For a recent review on the subject, see e.g. W. Bernreuther, Lect. Notes Phys. 591, 237 (2002), hep-ph/0205279.

    Google Scholar 

  • 25. V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).

    Google Scholar 

  • 26. M. E. Shaposhnikov, Nucl. Phys. B 287, 757 (1987).

    Google Scholar 

  • 27. K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002), http://pdg.lbl.gov/.

    Google Scholar 

  • 28. M. Le Bellac: Thermal Field Theory, (Cambridge University Press, Cambridge 1996) pp 124–127.

    Google Scholar 

  • 29. K. Kajantie, M. Laine, J. Peisa, K. Rummukainen, and M. Shaposnikov, Nucl. Phys. B 544, 357 (1999).

    Google Scholar 

  • 30. V. Skalozub and V. Demchik, Can baryogenesis survive in the standard model due to strong hypermagnetic field?, hep-ph/9909550.

    Google Scholar 

  • 31. The observational situation is discussed in P.P. Kronberg, Rep. Prog. Phys. 57, 325 (1994); or more recently in J.-L. Han and R. Wielebinski, Milestones in the Observations of Cosmic Magnetic Fields, ChJ A & A, 2, 293 (2002), astro-ph/0209090.

    Google Scholar 

  • 32. R. Beck, A. Brandenburg, D. Moss, A. Shukurov and D. Sokoloff, Annu. Rev. Astron. Astrophys. 34, 155 (1996).

    Google Scholar 

  • 33. J. A. Eilek and F. N. Owen, Ap. J. 567, 202 (2002).

    Google Scholar 

  • 34. T. E. Clarke, P. P. Kronberg and H. Böhringer, Ap. J. 547, L111 (2001).

    Google Scholar 

  • 35. For reviews on the origin, evolution and some cosmological consequences of primordial magnetic fields see: K. Enqvist, Int. J. Mod. Phys. D 7, 331 (1998); R. Maartens: Cosmological magnetic fields. In: International Conference on Gravitation and Cosmology, Pramana 55, 575 (2000) and references therein; D. Grasso and H.R. Rubinstein, Phys. Rep. 348, 163 (2001).

    Google Scholar 

  • 36. For quark-hadron PT: J. Quashnock, A. Loeb and D.N. Spergel, Ap. J. 344, L49 (1989); B. Cheng and A.V. Olinto, Phys. Rev. D 50, 2421 (1994); G. Sigl, A.V. Olinto and K. Jedamzik, Phys. Rev. D 55, 4582 (1997).

    Google Scholar 

  • 37. For EWPT: G. Baym, D. Bödeker and L. McLerran, Phys. Rev. D 53, 662 (1996).

    Google Scholar 

  • 38. For a PT at a critical temperature larger than EW scale: D. Boyanovsky, H. J. de Vega and M. Simionato, Large scale magnetogenesis from a non-equilibrium phase transition in the radiation dominated era, Phys. Rev. D 67, 123505 (2003), hep-ph/0211022.

    Google Scholar 

  • 39. T. Vachaspati, Phys. Lett. B 265, 258 (1991); T. W. B. Kibble and A. Vilenkin, Phys. Rev. D 52, 679 (1995); E.J. Copeland, P. M. Saffin and O. Törnqvist, Phys. Rev. D 61, 105005 (2000).

    Google Scholar 

  • 40. For an overview of the subject, see e.g., A. D. Dolgov, Generation of magnetic fields in cosmology, hep-ph/0110293.

    Google Scholar 

  • 41. M. S. Turner and L. M. Widrow, Phys. Rev. D 37, 2743 (1988).

    Google Scholar 

  • 42. B. Ratra, Ap. J. 391, L1 (1992); M. Gasperini, M. Giovannini and G. Veneziano, Phys. Rev. Lett. 75, 3796 (1995); D. Lemoine and M. Lemoine, Phys. Rev. D 52, 1955 (1995).

    Google Scholar 

  • 43. T. Prokopec, Cosmological magnetic fields from photon coupling to fermions and bosons in inflation, astro-ph/0106247.

    Google Scholar 

  • 44. J.D. Barrow, P. Ferreira and J. Silk, Phys. Rev. Lett. 78, 3610 (1997).

    Google Scholar 

  • 45. K. Jedamzik, V. Katalinić and A. V. Olinto, Phys. Rev. Lett. 85, 700 (2000).

    Google Scholar 

  • 46. J. Adams, U. H. Danielsson, D. Grasso and H. rubinstein, Phys. Lett. B 388, 253 (1996).

    Google Scholar 

  • 47. For the effect of stochastic magnetic fields, see A. Mack, T. Kahniashvili and A. Kosowsky, Phys.Rev. D 65, 123004 (2002), and references therein.

    Google Scholar 

  • 48. D. D. Harari, J. D. Hayward and M. Zaldarriaga, Phys. Rev. D 55, 1841 (1997); M Giovannini, Phys. Rev. D 56, 3198 (1997).

    Google Scholar 

  • 49. A. Kosowsky and A. Loeb, Ap. J. 469, 1 (1996); E. S. Scannapieco and P.G. Ferreira, Phys. Rev. D 56, 7493 (1997).

    Google Scholar 

  • 50. A. Ayala, J. Jalilian-Marian, L. McLerran and A. P. Vischer, Phys. Rev. D 49, 5559 (1994).

    Google Scholar 

  • 51. M. Dine, O. Lechtenfield, B. Sakita, W. Fischel and J. Polchinski, Nucl. Phys. B 342, 381 (1990).

    Google Scholar 

  • 52. M. Joyce, T. Prokopec and N. Turok, Phys. Lett. B 338, 269 (1994).

    Google Scholar 

  • 53. E. Torrente-Lujan, Phys. Rev. D 60, 085003 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nora Bretón Jorge Luis Cervantes-Cota Marcelo Salgado

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Piccinelli, G., Ayala, A. Electroweak Baryogenesis and Primordial Hypermagnetic Fields. In: Bretón, N., Cervantes-Cota, J.L., Salgado, M. (eds) The Early Universe and Observational Cosmology. Lecture Notes in Physics, vol 646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40918-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40918-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21847-0

  • Online ISBN: 978-3-540-40918-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics