Optimization of Timed Automata Models Using Mixed-Integer Programming

  • Sebastian Panek
  • Olaf Stursberg
  • Sebastian Engell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2791)


Research on optimization of timed systems, as e.g. for computing optimal schedules of manufacturing processes, has lead to approaches that mainly fall into the following two categories: On one side, mixed integer programming (MIP) techniques have been developed to successfully solve scheduling problems of moderate to medium size. On the other side, reachability algorithms extended by the evaluation of performance criteria have been employed to optimize the behavior of systems modeled as timed automata (TA). While some successful applications to real-world examples have been reported for both approaches, industrial scale problems clearly call for more powerful techniques and tools.

The work presented in this paper aims at combining the two types of approaches: The intention is to take advantage of the simplicity of modeling with timed automata (including modularity and synchronization), but also of the relaxation techniques and heuristics that are known from MIP. As a first step in this direction, the paper describes a translation procedure that automatically generates MIP representations of optimization problems formulated initially for TA. As a possible use of this translation, the paper suggests an iterative solution procedure, that combines a tree search for TA with the MIP solution of subproblems. The key idea is to use the relaxations in the MIP step to guide the tree search for TA in a branch-and-bound fashion.


Branch-and-Bound Techniques Discrete Optimization Mixed-Integer Programming Scheduling Timed Automata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdeddaim, Y., Maler, O.: Job-shop scheduling using timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 478–492. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems. Kluwer Acad. Publisher, Dordrecht (2001)zbMATHGoogle Scholar
  3. 3.
    Behrmann, G., Fehnker, A., Hune, T.S., Petterson, P., Larsen, K., Romijn, J.: Efficient guiding towards cost-optimality in UPPAAL. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 174–188. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Brooke, A., Kendrick, D., Meeraus, A., Raman, R.: GAMS - A User’s Guide. GAMS Development Corp., Washington (1998)Google Scholar
  5. 5.
    Bruns, R.: Scheduling. In: Baeck, T., Fogel, D.B., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation, pp. F1.5: 1–9. Inst. of Physics Publishing (1997)Google Scholar
  6. 6.
    CPLEX. Using the CPLEX Callable Library. ILOG Inc., Mountain View, CA (2002)Google Scholar
  7. 7.
    Engell, S., Maerkert, A., Sand, G., Schultz, R.: Production planning in a multiproduct batch plant under uncertainty. In: Progress in Industrial Mathematics, pp. 526–531. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Fehnker, A.: Citius, Vilius, Melius - Guiding and Cost-Optimality in Model Checking of Timed and Hybrid Systems. Dissertation, KU Nijmegen (2002)Google Scholar
  9. 9.
    Graf, S., Bozga, M., Mounier, L.: If-2.0: A validation environment for component-based real-time systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 343–348. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Groetschel, M., Krumke, S.O., Rambau, J. (eds.): Online Optimzation of Large Scale Systems. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Harjunkoski, I., Grossmann, I.E.: Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods. Computers and Chemical Enginnering 26(11), 1501–1647 (2002)CrossRefGoogle Scholar
  12. 12.
    Ierapetritou, M., Floudas, C.: Effective continuous-time formulation for shortterm scheduling: Multipurpose batch processes. Industrial and Engineering Chemistry Research 37, 4341–4359 (1998)CrossRefGoogle Scholar
  13. 13.
    Kondili, E., Pantelides, C.C., Sargent, R.W.H.: A general algorithm for shortterm scheduling of batch operations: MILP formulation. Computers and Chemical Engineering 17, 211–227 (1993)CrossRefGoogle Scholar
  14. 14.
    Larsen, K.G., Petterson, P., Yi, W.: UPPAAL in a nutshell. Int. Journal on Software Tools for Technology Transfer 1(1), 134–152 (1997)zbMATHCrossRefGoogle Scholar
  15. 15.
    Shah, N., Pantelides, C.C., Sargent, R.W.H.: A general algorithm for shortterm scheduling of batch operations: Computational issues. Computers and Chemical Engineering 17(2), 229–244 (1993)CrossRefGoogle Scholar
  16. 16.
    Stursberg, O., Panek, S.: Control of switched hybrid systems based on disjunctive formulations. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 421–435. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Williams, H.P.: Model Building in Mathematical Programming. Wiley, Chichester (1999)Google Scholar
  18. 18.
    Yovine, S.: Kronos: A verification tool for real-time systems. Int. Journal of Software Tools for Technology Transfer 1(1/2), 123–133 (1997)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sebastian Panek
    • 1
  • Olaf Stursberg
    • 1
  • Sebastian Engell
    • 1
  1. 1.Process Control Laboratory (BCI-AST)University of DortmundDortmundGermany

Personalised recommendations