PARS: A Process Algebra with Resources and Schedulers

  • MohammadReza Mousavi
  • Michel Reniers
  • Twan Basten
  • Michel Chaudron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2791)


In this paper, we introduce a dense time process algebraic formalism with support for specification of (shared) resource requirements and resource schedulers. The goal of this approach is to facilitate and formalize introduction of scheduling concepts into process algebraic specification using separate specifications for resource requiring processes, schedulers and systems composing the two. The benefits of this research are twofold. Firstly, it allows for formal investigation of scheduling strategies. Secondly, it provides the basis for an extension of schedulability analysis techniques to the formal verification process, facilitating the modelling of real-time systems in a process algebraic manner using the rich background of research in scheduling theory.


Schedule Strategy Parallel Composition Process Algebra Earliest Deadline First Periodic Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., Murphy, D.: Timing and causality in process algebra. Acta Informatica 33(4), 317–350 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. EATCS Monographs. Springer, Berlin (2002)zbMATHGoogle Scholar
  3. 3.
    Brémond-Grégoire, P., Lee, I.: A process algebra of communicating shared resources with dense time and priorities. Theoretical Computer Science 189(1-2), 179–219 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Buchholtz, M., Andersen, J., Loevengreen, H.H.: Towards a process algebra for shared processors. In: Proceedings of MTCS 2001. Electronic Notes in Theoretical Computer Science, vol. 52(3) (2002)Google Scholar
  5. 5.
    Buttazzo, G.C.: Hard Real-Time Computing Systems. Kluwer Academic Publishers, Boston (1997)zbMATHGoogle Scholar
  6. 6.
    Corradini, F., D’Ortenzio, D., Inverardi, P.: On the relationships among four timed process algebras. Fundamenta Informaticae 38(4), 377–395 (1999)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Daniels, M.: Modelling real-time behavior with an interval time calculus. In: Vytopil, J. (ed.) FTRTFT 1992. LNCS, vol. 571, pp. 53–71. Springer, Heidelberg (1991)Google Scholar
  8. 8.
    Davies, J., Schneider, S.: A brief history of Timed CSP. Theoretical Computer Science 138(2), 243–271 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fersman, E., Pettersson, P., Yi, W.: Timed automata with asynchronous processes: Schedulability and decidability. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 67–82. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Fredette, A.N., Cleaveland, R.: RTSL: A language for real-time schedulability analysis. In: Proceedings of the Real-Time Systems Symposium, pp. 274–283. IEEE Computer Society Press, Los Alamitos (1993)CrossRefGoogle Scholar
  11. 11.
    Gastin, P., Mislove, M.W.: A truly concurrent semantics for a process algebra using resource pomsets. Theoretical Computer Science 281, 369–421 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lee, I., Choi, J.-Y., Kwak, H.H., Philippou, A., Sokolsky, O.: A family of resource-bound real-time process algebras. In: Proceedings of FORTE 2001, pp. 443–458. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  13. 13.
    Lee, I., Philippou, A., Sokolsky, O.: A general resource framework for real-time systems. In: Proceedings of the Monterey Workshop, Venice, Italy (2002)Google Scholar
  14. 14.
    Mousavi, M., Reniers, M., Basten, T., Chaudron, M.: PARS: A process algebra with resource and schedulers. Technical report, Department of Computer Science, Eindhoven University of Technology (2003) (to appear)Google Scholar
  15. 15.
    Nicollin, X., Sifakis, J.: The algebra of timed processes ATP: theory and application. Information and Computation 114(1), 131–178 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Núñez, M., Rodríguez, I.: PAMR: A process algebra for the management of resources in concurrent systems. In: Proceedings of FORTE 2001, pp. 169–185. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  17. 17.
    van Glabbeek, R., Rittgen, P.: Scheduling algebra. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 278–292. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • MohammadReza Mousavi
    • 1
  • Michel Reniers
    • 1
  • Twan Basten
    • 1
  • Michel Chaudron
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations