Skip to main content

Discrete Lagrangian Models

  • Chapter
  • First Online:
Discrete Integrable Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 644))

Abstract

These lectures are devoted to discrete integrable Lagrangian models. A large collection of integrable models is presented in the Lagrangian fashion, along with their integrable discretizations: the Neumann system, the Garnier system, three systems from the rigid-body dynamics (multidimensional versions of the Euler top, the Lagrange top, and the top in a quadratic potential), the Clebsch case of the Kirchhoff equations for a rigid body in an ideal fluid, and certain lattice systems of the Toda type. The presentation of examples is preceded by the relevant theoretical background material on Hamiltonian mechanics on Poisson and symplectic manifolds, complete integrability and Lax representations, Lagrangian mechanics with continuous and discrete time on general manifolds and, in particular, on Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Abraham, R. and Marsden, J.E. (1978) Foundations of mechanics, Addison–Wesley.

    Google Scholar 

  • 2. Adams, M.R., Harnad, J. and Hurtubise, J. (1990) Dual moment maps into loop algebras. Lett. Math. Phys., 20, 299–308.

    Google Scholar 

  • 3. Adler, V.E. (1999) Legendre transformations on the triangular lattice. Funct. Anal. Appl., 34 (2000), 1–9.

    Google Scholar 

  • 4. Adler, V.E. (2000) On discretizations of the Landau–Lifshits equation. Theor. Math. Phys., 124, 897–908.

    Google Scholar 

  • 5. Adler, V.E. and Shabat, A.B. (1997) On a class of Toda chains. Theor. Math. Phys., 111, 647–657.

    Google Scholar 

  • 6. Adler, V.E. and Shabat, A.B. (1997) Generalized Legendre transformations. Theor. Math. Phys., 112, 935–948.

    Google Scholar 

  • 7. Antonowicz, M. (1992) Gelfand–Dikii hierarchies with sources and Lax representations for restricted flows. Phys. Lett. A, 165, 47–52.

    Google Scholar 

  • 8. Arnold, V.I. (1966) Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier, 16, 319–361.

    Google Scholar 

  • 9. Arnold, V.I. (1989) Mathematical methods of classical mechanics. Berlin etc: Springer–Verlag.

    Google Scholar 

  • 10. Belyaev, A.V. (1981) On the motion of a multidimensional body with a fixed point in a gravitational field. Math. USSR Sbornik, 42, 413–418.

    Google Scholar 

  • 11. Bobenko, A.I., Reyman, A.G., and Semenov-Tian-Shansky, M.A. (1989) The Kowalewski top 99 years later: a Lax pair, generalizations and explicit solutions. Commun. Math. Phys., 122, 321–354.

    Google Scholar 

  • 12. Bobenko, A.I. and Suris, Yu.B. (1999) Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top. Commun. Math. Phys., 204, 147–188.

    Google Scholar 

  • 13. Bobenko, A.I. and Suris, Yu.B. (1999) Discrete Lagrangian reduction, discrete Euler–Poincaré equations, and semi–direct products. Lett. Math. Phys., 49, 79–93.

    Google Scholar 

  • 14. Bogoyavlensky, O.I. (1984) Integrable Euler equations on Lie algebras arising in problems of mathematical physics. Math. USSR Izv., 25, 207–257.

    Google Scholar 

  • 15. Bogoyavlensky, O.I. (1992) Euler equations on finite-dimensional Lie coalgebras, arising in problems of mathematical physics. Russ. Math. Surv., 47, 117–189.

    Google Scholar 

  • 16. Cendra, H., Holm, D.D., Marsden, J.E. and Ratiu, T.S. (1998) Lagrangian reduction, the Euler-Poincaré equations and semidirect products. – In: Geometry of differential equations. Amer. Math. Soc. Transl., 186, 1-25.

    Google Scholar 

  • 17. Choodnovsky, D.V. and Choodnovsky, G.V. (1979) Completely integrable class of mechanical systems connected with Korteweg–de Vries and multicomponent Schrödinger equations. Lett. Nuovo Cim., 22, Nr. 2, 47–51.

    Google Scholar 

  • 18. Clebsch, A. (1870) Über die Bewegung eines Körpers in einer Flüssigkeit. Math. Annalen, 3, 238–262.

    Google Scholar 

  • 19. Cushman, R.H., Bates, L.M. (1997) Global aspects of classical integrable systems. Boston etc.: Birkhäuser.

    Google Scholar 

  • 20. Frahm, W. (1875) Über gewisse Differentialgleichungen. Math. Ann., 8, 35–44.

    Google Scholar 

  • 21. Garnier, R. (1919) Sur une classe de systèmes différentiels abéliens déduits de la théorie des équations linéaires. Rend. Circ. Matem. Palermo, 43, Nr. 4, 155–191.

    Google Scholar 

  • 22. Gavrilov, L. and Zhivkov, A. (1998) The complex geometry of the Lagrange top. L’Enseign. Math., 44, 133–170.

    Google Scholar 

  • 23. Holm, D.D., Marsden, J.E. and Ratiu, T.S. (1998) The Euler-Poincaré equations and semidirect products, with applications to continuum theories. Adv. in Math., 137, 1–81.

    Google Scholar 

  • 24. Hone, A.N.W., Kuznetsov, V.B., and Ragnisco, O. (1999) Bäcklund transformations for many-body systems related to KdV. J. Phys. A: Math. Gen., 32, L299–L306.

    Google Scholar 

  • 25. Kirchhoff, G. (1869) Über die Bewegung eines Rotationskörpers in einer Flüssigkeit. J. Reine Angew. Math., 71, 237–262.

    Google Scholar 

  • 26. Kosmann-Schwarzbach, Y. (2004) Lie Bialgebras, Poisson Lie Groups, and Dressing Transformations, Lect. Notes Phys. 638, pp. 107–173.

    Google Scholar 

  • 27. Manakov, S.V. (1976) Note on the integration of Euler’s equations of the dynamics of an n–dimensional rigid body. Funct. Anal. Appl., 10, 328–329.

    Google Scholar 

  • 28. Marsden, J.E., Patrick, G.W. and Shkoller, S. (1998) Multisymplectic geometry, variational integrators and nonlinear PDEs. Comm. Math. Phys., 199, 351–395.

    Google Scholar 

  • 29. Marsden, J.E. and Ratiu, T.S. (1999) Introduction to mechanics and symmetry. Berlin etc: Springer (2nd edition).

    Google Scholar 

  • 30. Marsden, J.E., Ratiu, T.S., and Weinstein, A. (1984a) Semi–direct products and reduction in mechanics. Trans. Amer. Math. Soc., 281, 147–177.

    Google Scholar 

  • 31. Marsden, J.E., Ratiu, T.S., and Weinstein, A. (1984b) Reduction and Hamiltonian structures on duals of semidirect product Lie algebras. Contemp. Math., 28, 55–100.

    Google Scholar 

  • 32. Moser, J. (1980a) Various aspects of integrable Hamiltonian systems. – In: Dynamical systems, C.I.M.E. Lectures, Progress in Math. 8. Boston etc.: Birkhäuser, 233–290.

    Google Scholar 

  • 33. Moser, J. (1980b) Geometry of quadrics and spectral theory. – In: The Chern symposium, Berkeley, June 1979. Berlin etc.: Springer, 147–188.

    Google Scholar 

  • 34. Moser, J. and Veselov, A.P. (1991) Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys., 139, 217–243.

    Google Scholar 

  • 35. Mumford, D. (1984) Tata lectures on theta. Boston etc.: Birkhäuser.

    Google Scholar 

  • 36. Neumann, C. (1859) De problemate quodam mechanica, quod ad primam integralium ultraellipticorum classem revocatur. J. Reine Angew. Math., 56, 46–69.

    Google Scholar 

  • 37. Perelomov, A.M. (1980) A few remarks about integrability of the equations of motion of a rigid body in ideal fluid. Phys. Lett. A, 80, 156–158.

    Google Scholar 

  • 38. Ragnisco, O. (1992) A discrete Neumann system. Phys. Lett. A, 167, 165–171.

    Google Scholar 

  • 39. Ragnisco, O. (1995) Dynamical r-matrices for integrable maps. Phys. Lett. A, 198, 295–305.

    Google Scholar 

  • 40. Ratiu, T. (1982) Euler–Poisson equations on Lie algebras and the n–dimensional heavy rigid body. Amer. J. Math., 104, 409–448.

    Google Scholar 

  • 41. Ratiu, T. and van Moerbeke, P. (1982) The Lagrange rigid body motion. Ann. Inst. Fourier, 32, 211–234.

    Google Scholar 

  • 42. Reyman, A.G. (1980) Integrable Hamiltonian systems connected with graded Lie algebras. J. Sov. Math., 19, 1507–1545.

    Google Scholar 

  • 43. Reyman, A.G. and Semenov-Tian-Shansky, M.A. (1994) Group theoretical methods in the theory of finite dimensional integrable systems. – In: Encyclopaedia of mathematical science, v.16: Dynamical Systems VII, Springer, 116–225.

    Google Scholar 

  • 44. Schottky, F. (1891) Über das analytische Problem der Rotation eines starren Körpers in Raume von vier Dimensionen. Sitzungsber. Königl. Preuss. Akad. Wiss. Berlin, 13, 227–232.

    Google Scholar 

  • 45. Suris, Yu.B. (1994) A discrete–time Garnier system. Phys. Lett. A, 189, 281–289.

    Google Scholar 

  • 46. Suris, Yu.B. (1997) On some integrable systems related to the Toda lattice. J. Phys. A, 30, 2235–2249.

    Google Scholar 

  • 47. Suris, Yu.B. (2000) The motion of a rigid body in a quadratic potential: an integrable discretization. Intern. Math. Research Notices, 12, 643–663.

    Google Scholar 

  • 48. Suris, Yu.B. (2001) Integrability of V. Adler’s discretization of the Neumann system. Phys. Lett. A, 279, 327–332.

    Google Scholar 

  • 49. Suris, Yu.B. (2001) Integrable discretizations of some cases of the rigid body dynamics. J. Nonlin. Math. Phys., 8, 534–560.

    Google Scholar 

  • 50. Suris, Yu.B. (2003) The problem of integrable discretization: Hamiltonian approach. Progress in Mathematics, Vol. 219, Basel etc.: Birkhäuser.

    Google Scholar 

  • 51. Toda, M. (1967) Vibration of a chain with nonlinear interaction. J. Phys. Soc. Japan, 22, 431–436.

    Google Scholar 

  • 52. Toda, M. (1989) Theory of nonlinear lattices, Berlin etc: Springer–Verlag.

    Google Scholar 

  • 53. Tsuchida, T., Ujino, H., and Wadati, M. (1999) Integrable semi–discretization of the coupled nonlinear Schrödinger equations. J. Phys. A: Math. Gen., 32, 2239–2262.

    Google Scholar 

  • 54. Veselov, A.P. (1988) Integrable discrete time systems and difference operators. Funct. Anal. Appl., 22, 83–93.

    Google Scholar 

  • 55. Yamilov, R.I. (1989) Generalizations of the Toda chain, and conservation laws. Preprint Inst. of Math., Ufa (in Russian). English version: Classification of Toda–type scalar lattices. – In: Nonlinear evolution equations and dynamical systems, NEEDS’92, Eds. V. Makhankov, I. Puzynin, O. Pashaev (1993). Singapore: World Scientific, 423–431.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Basil Grammaticos Thamizharasi Tamizhmani Yvette Kosmann-Schwarzbach

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Suris, Y. Discrete Lagrangian Models. In: Grammaticos, B., Tamizhmani, T., Kosmann-Schwarzbach, Y. (eds) Discrete Integrable Systems. Lecture Notes in Physics, vol 644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40357-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40357-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21425-0

  • Online ISBN: 978-3-540-40357-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics