Pre-nets, Read Arcs and Unfolding: A Functorial Presentation

  • Paolo Baldan
  • Roberto Bruni
  • Ugo Montanari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2755)


Pre-nets have been recently proposed as a means of providing a functorial algebraic semantics to Petri nets (possibly with read arcs), overcoming some previously unsolved subtleties of the classical model. Here we develop a functorial semantics for pre-nets following a sibling classical approach based on an unfolding construction. Any pre-net is mapped to an acyclic branching net, representing its behaviour, then to a prime event structure and finally to a finitary prime algebraic domain. Then the algebraic and unfolding view are reconciled: we exploit the algebraic semantics to define a functor from the category of pre-nets to the category of domains that is shown to be naturally isomorphic to the unfolding-based functor. All the results are extended to pre-nets with read arcs.


Monoidal Category Denotational Semantic Domain Semantic Concatenable Process Algebraic Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BCM01]
    Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event structures and processes. Inform. and Comput. 1(171), 1–49 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [BD87]
    Best, E., Devillers, R.: Sequential and concurrent behaviour in Petri net theory. Theoret. Comput. Sci. 55, 87–136 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Ber78]
    Berry, G.: Stable models of typed lambda-calculi. In: Ausiello, G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 72–89. Springer, Heidelberg (1978)CrossRefGoogle Scholar
  4. [BMMS99]
    Bruni, R., Meseguer, J., Montanari, U., Sassone, V.: Functorial semantics for Petri nets under the individual token philosophy. In: Proceedings of CTCS 1999. Elect. Notes in Th. Comput. Sci., vol. 29. Elsevier Science, Amsterdam (1999)Google Scholar
  5. [BMMS01]
    Bruni, R., Meseguer, J., Montanari, U., Sassone, V.: Functorial models for Petri nets. Inform. and Comput. 170(2), 207–236 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BMMS02]
    Bruni, R., Meseguer, J., Montanari, U., Sassone, V.: Functorial models for contextual pre-nets. Technical Report TR-02-09, University of Pisa (2002)Google Scholar
  7. [CW01]
    Crazzolara, F., Winskel, G.: Events in security protocols. In: Proceedings of CCS 2001, pp. 96–105. ACM, New York (2001)Google Scholar
  8. [DFMR94]
    De Francesco, N., Montanari, U., Ristori, G.: Modeling concurrent accesses to shared data via Petri nets. In: Programming Concepts, Methods and Calculi. IFIP Transactions, vol. A-56, pp. 403–422. North Holland, Amsterdam (1994)Google Scholar
  9. [DMM96]
    Degano, P., Meseguer, J., Montanari, U.: Axiomatizing the algebra of net computations and processes. Acta Inform. 33(7), 641–667 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [GP95]
    van Glabbeek, R.J., Plotkin, G.D.: Configuration structures. In: Proceedings of LICS 1995, pp. 199–209. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  11. [GR83]
    Goltz, U., Reisig, W.: The non-sequential behaviour of Petri nets. Inform. And Comput. 57, 125–147 (1983)zbMATHGoogle Scholar
  12. [Mac71]
    MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)zbMATHGoogle Scholar
  13. [MM90]
    Meseguer, J., Montanari, U.: Petri nets are monoids. Inform. and Comput. 88, 105–155 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [MMS92]
    Meseguer, J., Montanari, U., Sassone, V.: On the semantics of Petri nets. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 286–301. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  15. [MMS96]
    Meseguer, J., Montanari, U., Sassone, V.: Process versus unfolding semantics for Place/Transition Petri nets. Theoret. Comput. Sci. 153(1-2), 171–210 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [MMS97a]
    Meseguer, J., Montanari, U., Sassone, V.: On the semantics of Place/Transition Petri nets. Math. Struct. in Comput. Sci. 7, 359–397 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [MMS97b]
    Meseguer, J., Montanari, U., Sassone, V.: Representation theorems for Petri nets. In: Freksa, C., Jantzen, M., Valk, R. (eds.) Foundations of Computer Science. LNCS, vol. 1337, pp. 239–249. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. [MR94]
    Montanari, U., Rossi, F.: Contextual occurrence nets and concurrent constraint programming. In: Ehrig, H., Schneider, H.-J. (eds.) Dagstuhl Seminar 1993. LNCS, vol. 776, pp. 280–295. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  19. [MR95]
    Montanari, U., Rossi, F.: Contextual nets. Acta Inform. 32, 545–596 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [NPW81]
    Nielsen, M., Plotkin, G., Winskel, G.: Petri Nets, Event Structures and Domains, Part 1. Theoret. Comput. Sci. 13, 85–108 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [Pet62]
    Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Schriften des Institutes für Instrumentelle Matematik, Bonn (1962)Google Scholar
  22. [Rei85]
    Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1985)CrossRefzbMATHGoogle Scholar
  23. [Sas98]
    Sassone, V.: An axiomatization of the category of Petri net computations. Math. Struct. in Comput. Sci. 8(2), 117–151 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  24. [Vog97]
    Vogler, W.: Efficiency of asynchronous systems and read arcs in Petri nets. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 538–548. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  25. [Win87]
    Brauer, W., Reisig, W., Rozenberg, G. (eds.): APN 1986. LNCS, vol. 255. Springer, Heidelberg (1987)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Roberto Bruni
    • 2
  • Ugo Montanari
    • 2
  1. 1.Dipartimento di InformaticaUniversità Ca’ Foscari di VeneziaItalia
  2. 2.Dipartimento di InformaticaUniversità di PisaItalia

Personalised recommendations