Presenting and Combining Inference Systems

Presentations with Inference Rules
  • Wiesław Pawłowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2755)


The paper discusses the problem of representing and combining inference systems for (abstract) context institutions, within the framework of context presentations [10]. As it turns out, thanks to the context information present in this setting, the inference rules for quantifier logics can be expressed and manipulated in a simple way, without referring to binding operators or requirements (cf. [12]).


Inference Rule Context Institution Formula Variable Logical System Interpretation Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borceux, F.: Handbook of Categorical Algebra 1, Basic Category Theory. Encyclopedia of Mathematics and its Applications, vol. 50. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  2. 2.
    Caleiro, C., Gouveia, P., Ramos, J.: Completeness results for fibered parchments. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 185–200. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Caleiro, C., Mateus, P., Ramos, J., Sernadas, A.: Combining logics: Parchments revisited. In: Cerioli, M., Reggio, G. (eds.) WADT 2001 and CoFI WG Meeting 2001. LNCS, vol. 2267, pp. 48–70. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Goguen, J.A., Burstall, R.M.: A study in the foundations of programming methodology: Specifications, institutions, charters and parchments. In: Poigné, A., Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 313–333. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  5. 5.
    Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery 39, 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Mossakowski, T.: Using limits of parchments to systematically construct institutions of partial algebras. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 379–393. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. 7.
    Mossakowski, T., Tarlecki, A., Pawłowski, W.: Combining and representing logical systems. In: Moggi, E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 177–198. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Mossakowski, T., Tarlecki, A., Pawłowski, W.: Combining and representing logical systems using model-theoretic parchments. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 349–364. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Pawłowski, W.: Contextual Logical Systems for the Foundations of Software Specification and Development (in Polish). PhD thesis, Institute of Computer Science, Polish Academy of Sciences, Warsaw (2000)Google Scholar
  10. 10.
    Pawłowski, W.: Presentations for abstract context institutions. In: Cerioli, M., Reggio, G. (eds.) WADT 2001 and CoFI WG Meeting 2001. LNCS, vol. 2267, pp. 256–279. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Sernadas, A., Sernadas, C., Caleiro, C.: Fibring of logics as a categorial construction. Journal of Logic and Computation 9(2), 149–179 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sernadas, A., Sernadas, C., Caleiro, C., Mossakowski, T.: Categorical fibring of logics with terms and binding operators. In: Gabbay, D., de Rijke, M. (eds.) Frontiers of Combining Systems 2, pp. 295–316. Research Studies Press, Hertfordshire (2000)Google Scholar
  13. 13.
    Stoughton, A.: Substitution revisited. Theoretical Computer Science 59, 317–325 (1988)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wiesław Pawłowski
    • 1
  1. 1.Institute of Computer SciencePolish Academy of SciencesSopotPoland

Personalised recommendations