Notions of Behaviour and Reachable-Part and Their Institutions

  • Alexander Kurz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2755)


Notions of observability and reachability induce a relation of indistinguishability on the models of specifications. We show how to obtain, in a systematic way, from a given institution, an institution that respects this indistinguishability relation. Moreover, observability and reachability are treated in formally dual way.


Modal Logic Natural Transformation Category Theory Duality Principle Observational Equality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aczel, P., Mendler, N.: A final coalgebra theorem. In: Dybjer, P., Pitts, A.M., Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  2. 2.
    Arbib, M.A., Manes, E.G.: Foundations of system theory: decomposable systems. Automatica 10, 285–302 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arbib, M.A., Manes, E.G.: Adjoint machines, state-behaviour machines, and duality. Journ. of Pure and Applied Algebra 6, 313–344 (1975)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bidoit, M., Hennicker, R.: On the integration of observability and reachability concepts. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 21–36. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bidoit, M., Hennicker, R., Kurz, A.: Observational logic, constructor-based logic, and their duality. Theoretical Computer Science (to appear); Extended version of [6]. Available as CWI Technical Report SEN-R0223 (2002)Google Scholar
  6. 6.
    Bidoit, M., Hennicker, R., Kurz, A.: On the duality between observability and reachability. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 72–87. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Borceux, F.: Handbook of Categorical Algebra. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cîrstea, C.: Institutionalising many-sorted coalgebraic modal logic. In: Moss, L.S. (ed.) Coalgebraic Methods in Computer Science (CMCS 2002). ENTCS, vol. 65(1) (2002)Google Scholar
  9. 9.
    Cîrstea, C.: On specification logics for algebra-coalgebra structures: Reconciling reachability and observability. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 82–97. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and programming. Journal of the ACM 39(1), 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goguen, J.: Realisation is universal. Mathematical System Theory 6(4), 359–374 (1973)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gray, J.W.: Formal category theory: adjointness for 2-categories. Lecture Notes in Mathematics, vol. 391. Springer, Heidelberg (1974)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hennicker, R., Bidoit, M.: Observational logic. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, p. 263. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Jacobs, B.: Categorical Logic and Type Theory. Elsevier, Amsterdam (1998)zbMATHGoogle Scholar
  15. 15.
    Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics i n Mathematical System Theory. McGraw-Hill, New York (1969)zbMATHGoogle Scholar
  16. 16.
    Kurz, A., Hennicker, R.: On institutions for modular coalgebraic specifications. Theoretical Computer Science 280, 69–103 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kurz, A., Pattinson, D.: Coalgebras and modal logics for parameterised endofunctors. Technical Report SEN-R0040, CWI (2000)Google Scholar
  18. 18.
    Kurz, A., Pattinson, D.: Notes on coalgebras, co-fibrations and concurrency. In: Reichel, H. (ed.) Coalgebraic Methods in Computer Science (CMCS 2000). ENTCS, vol. 33, pp. 199–233 (2000)Google Scholar
  19. 19.
    Lane, S.M.: Category Theory for the Working Mathematician. Springer, Heidelberg (1971)CrossRefzbMATHGoogle Scholar
  20. 20.
    Rutten, J.J.M.M.: Automata and coinduction - an exercise in coalgebra. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Rutten, J.J.M.M.: Universal coalgebra: A theory of systems. Theoretical Computer Science 249, 3–80 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Streicher, T.: Fibred categories á la J. Bénabou (1999),
  23. 23.
    Tarlecki, A.: Institutions: An abstract framework for formal specifications. In: Astesiano, E., Kreowski, H.-J., Krieg-Brückner, B. (eds.) Algebraic Foundations of Systems Specification. ch. 4. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alexander Kurz
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of LeicesterUK

Personalised recommendations