Advertisement

Approach-Independent Structuring Concepts for Rule-Based Systems

  • Hans-Jörg Kreowski
  • Sabine Kuske
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2755)

Abstract

In this paper, we propose new structuring concepts for rule-based systems that are independent of the type of rules and of the type of configurations to which rules are applied. Hence the concepts are applicable in various rule-based approaches allowing one to build up large systems from small components in a systematic way.

Keywords

Binary Relation Binary Tree Rule Base Transformation Unit Graph Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AKK99]
    Astesiano, E., Kreowski, H.-J., Krieg-Brückner, B.: Algebraic Foundations of Systems Specification. IFIP State-of-the-Art Reports. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  2. [DKKK00]
    Drewes, F., Knirsch, P., Kreowski, H.-J., Kuske, S.: Graph transformation modules and their composition. In: Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 15–30. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. [EEKR99]
    Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation. Applications, Languages and Tools, vol. 2. World Scientific, Singapore (1999)zbMATHGoogle Scholar
  4. [EKMR99]
    Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation. Concurrency, Parallelism, and Distribution, vol. 3. World Scientific, Singapore (1999)zbMATHGoogle Scholar
  5. [EM85]
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and Initial Semantics. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1985)CrossRefzbMATHGoogle Scholar
  6. [EM90]
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2: Module Specifications and Constraints. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1990)CrossRefzbMATHGoogle Scholar
  7. [HHKK00]
    Heckel, R., Hoffmann, B., Knirsch, P., Kuske, S.: Simple modules for GRACE. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 383–395. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. [HO80]
    Huet, G., Oppen, D.: Equations and rewrite rules: A survey. In: Book, R.V. (ed.) Formal Language Theory: Perspectives and Open Problems, pp. 349–405. Academic Press, London (1980)CrossRefGoogle Scholar
  9. [Kir99]
    Kirchner, H.: Term rewriting. In: Algebraic Foundations of Systems Specification [AKK99], pp. 273–320Google Scholar
  10. [KK96]
    Kreowski, H.-J., Kuske, S.: On the interleaving semantics of transformation units — a step into GRACE. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 89–108. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  11. [KK99a]
    Kreowski, H.-J., Kuske, S.: Graph transformation units and modules. In: Ehrig et al. [EEKR99], pp. 607–638Google Scholar
  12. [KK99b]
    Kreowski, H.-J., Kuske, S.: Graph transformation units with interleaving semantics. Formal Aspects of Computing 11(6), 690–723 (1999)CrossRefzbMATHGoogle Scholar
  13. [KK02]
    Knirsch, P., Kuske, S.: Distributed graph transformation units. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 207–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. [KKS97]
    Kreowski, H.-J., Kuske, S., Schürr, A.: Nested graph transformation units. International Journal on Software Engineering and Knowledge Engineering 7(4), 479–502 (1997)CrossRefGoogle Scholar
  15. [Roz97]
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hans-Jörg Kreowski
    • 1
  • Sabine Kuske
    • 1
  1. 1.Fachbereich 3Universität BremenBremenGermany

Personalised recommendations