French Noun Phrase Indexing and Mining for an Information Retrieval System

  • Hatem Haddad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2857)


In this paper, we present a noun phrase indexing and mining methodology for French Information Retrieval. Our assumption is that noun phrases constitute a better representation of text semantic content than single terms and can improve the effectiveness of an information retrieval system in particular when combined with a text mining process discovering associative relations with the aim of query expansion. Our experiments were conducted using two French test corpora and we compared different noun phrase indexing and mining strategies. We show that combining noun phrase indexing with associative relations can improve the information retrieval system performances, specially at low recall.


Information Retrieval Association Rule Noun Phrase Frequent Itemsets Association Rule Mining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buckley, C., Salton, G., Allan, J.: The Effect of Adding Relevance Information in a Relevance Feedback Environment. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 292–300 (1994)Google Scholar
  2. 2.
    Bourigault, D.: LEXTER, un logiciel d’extraction terminologique. 2me Colloque international de TermNet, Avignon, France (1992)Google Scholar
  3. 3.
    Church, W.K., Hanks, P.: Word association norms, Mutual information, and Lexicography. Computational Linguistics 16, 22–29 (1990)Google Scholar
  4. 4.
    Fagan, J.L.: The effectiveness of a nonsyntactic approach to automatic phrase indexing for document retrieval. Journal of the American Society for Information Scienc 40, 115–132 (1989)CrossRefGoogle Scholar
  5. 5.
    Fagan, J.L.: Experiments in Automatic Phrase Indexing for Document Retrieval: A Comparison of Syntactic and Non-Syntactic Methods. PhD thesis, Department of Computer Science, Cornell University, Ithaca, New York (1987)Google Scholar
  6. 6.
    Gry, M., Haddad, H.: Knowledge Discovery for Automatic Query Expansion on the World Wide Web. In: International Workshop on the World-Wide Web and Conceptual Modeling, France, pp. 334–347 (1999)Google Scholar
  7. 7.
    Haddad, H., Chevallet, J.P., Bruandet, M.F.: Relations between Terms Discovered by Association Rules. In: 4th European conference on Principles and Practices of Knowledge Discovery in Databases PKDD 2000, Workshop on Machine Learning and Textual Information Access, France (2000)Google Scholar
  8. 8.
    Haddad, H.: Combining Text Mining and NLP for Information Retrieval. In: International Conference Conference on Artificial Intelligence (IC-AI), Las Vegas, USA, pp. 434–439 (2002)Google Scholar
  9. 9.
    Hull, D., Grefenstette, G., Schulze, B.M., Gaussier, E., Schutze, H., Pedersen, J.: Xerox TREC-5 Site Report. Routing,Filtering, NLP and SPANISH Track. In: Voorhees, E., Harman, D.K. (eds.): The Fifth Text Retrieval Conference (TREC-5), pp. 167–180 (1997)Google Scholar
  10. 10.
    Jacquemin, C., Tsoukermann, E.: NLP for term variant extraction: synergy between morphology, lexicon, and syntax. In: Strzalkowski, T. (ed.) Natural Language Information Retrieval, Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  11. 11.
    Khoo, C.S.G.: The Use of Relation Matching in Information Retrieval. Singapore Libraries 26, 3–22 (1997)Google Scholar
  12. 12.
    Mitra, M., Buckley, C., Singhal, A., Cardi, C. In: Analysis of Statistical and Syntactic Phrases. In: 5me Confrence de Recherche d’Information Assiste par Ordinateur (RIAO), pp. 200-214 (1997)Google Scholar
  13. 13.
    Van Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)Google Scholar
  14. 14.
    Salton, G.: The SMART Retrieval System: Experiments in Automatic Document Processing, New Jersey. Prentice-Hall Series in Automatic Computation (1971)Google Scholar
  15. 15.
    Smeaton, A., O’Donnell, R., Kelledy, F.: Indexing Structures Derived from Syntax in TREC-3: System Description. In: Harman, D.K. (eds.): The Third Text REtrieval Conference (TREC-3), pp. 55–67 (1994)Google Scholar
  16. 16.
    Strzalkowski, T., Carballo, J.P.: Natural Language Information Retrieval: TREC-4 Report. In: Harman, D.K. (eds.): The Fourth Text REtrieval Conference (TREC-4), pp. 245–258 (1995)Google Scholar
  17. 17.
    Strzalkowski, T., Carballo, J.P.: Natural Language Information Retrieval: TREC-3 Report. In: Harman, D.K. (eds.): The Third Text REtrieval Conference (TREC-3), pp. 39–54 (1994)Google Scholar
  18. 18.
    Strzalkowski, T., Lin, F., Wang, J., Guthrie, L., Leistensnider, J., Wilding, J., Karlgren, J., Straszheim, T., Carballo, J.P.: Natural Language Information Retrieval: TREC-5 Report. In: Voorhees, E., Harman, D.K. (eds.): The Fifth Text REtrieval Conference (TREC-5), pp. 291–334 (1996)Google Scholar
  19. 19.
    Xu, J., Croft, B.: Improving the effectiveness of information retrieval with local context analysis. ACM Transactions on Information Systems 18, 79–112 (2000)CrossRefGoogle Scholar
  20. 20.
    Zhai, C., Tong, X., MilicFrayling, N., Evans, D.: Evaluation of syntactic phrase indexing - CLARIT NLP track report. In: Voorhees, E., Harman, D.K. (eds.): The Fifth Text REtrieval Conference (TREC-5), pp. 347-358 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hatem Haddad
    • 1
  1. 1.VTT Information TechnologyFinland

Personalised recommendations