Current Challenges in Bioinformatics

  • João Meidanis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2857)


My purpose in this text is to highlight some of the most important challenges in the area of Bioinformatics, drawing from several sources. The field is already pretty large and becoming more so. Therefore the selection of challenges presented here will tend to focus on topics I am more familiar with, with only brief mentions of topics I do not know in depth. The challenges vary in scope and motivation: some are broad, abstract while others are specialized to a given topic. Some are biologically motivated, others are nice as computer science problems. Also, I tried to show the dependencies among the challenges in order to get a global picture of the area. A basic knowledge on the principles of computational biology is assumed.


Genome Rearrangement Current Challenge National Human Genome Research Institute Fragment Assembly Eulerian Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arslan, A.N., Egecioglu, Ö., Pevzner, P.A.: A new approach to sequence comparison: normalized sequence alignment. Bioinformatics 17, 327–337 (2001)CrossRefGoogle Scholar
  2. 2.
    Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003)CrossRefGoogle Scholar
  3. 3.
    Caprara, A.: Sorting permutations by reversals and Eulerian cycle decompositions. SIAM Journal on Discrete Mathematics 12(1), 91–110 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Collins, F.S., Green, E.D., Guttmacher, A.E., Guyer, M.S.: A vision for the future of genomics research. Nature 422, 835–847 (2003)CrossRefGoogle Scholar
  5. 5.
    Datta, S., Datta, S.: Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics 19, 459–466 (2003)CrossRefGoogle Scholar
  6. 6.
    Durbin, R., Thierry-Mieg, J.: A C. elegans database. Documentation, code and data, available from
  7. 7.
    Graham, P.: ANSI Common Lisp. Prentice-Hall, Englewood Cliffs (1995) ISBN 0133708756Google Scholar
  8. 8.
    Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. Journal of the ACM 46(1), 1–27 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    The Institute for Genomic Research. World’s longest contiguous DNA sequence (July 2003),
  10. 10.
    Kaufman, L., Rousseeuw, P.J.: Fitting Groups in Data. An Introduction to Cluster Analysis. Wiley, New York (1990)Google Scholar
  11. 11.
    Myers, G., Durbin, R.: A table-driven, full-sensitivity similarity search algorithm. Journal of Computational Biology 10(2), 103–117 (2003)CrossRefGoogle Scholar
  12. 12.
    Myers, G.: Testimony for NSF Advisory Committee on Cyberinfrastructure (January 2002),
  13. 13.
    Olsen, G.J., Woese, C.R.: Ribosomal RNA: a key to phylogeny. FASEB Journal 7, 113–123 (1993)Google Scholar
  14. 14.
    Pevzner, P.A., Waterman, M.S.: Open combinatorial problems in computational molecular biology. In: Proceedings of the 3rd Israel Symposium on Theory, pp. 158–163. IEEE Computer Society Press, Los Alamitos (1995)CrossRefGoogle Scholar
  15. 15.
    Pevzner, P.A., Tang, H.: Fragment assembly with double-barreled data. Bioinformatics (Suppl.) 1, S225–233 (2001); Special ISMB 2001 issueGoogle Scholar
  16. 16.
    Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA 98(17), 9748–9753 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Setubal, J.C., Meidanis, J.: Introduction to Computational Molecular Biology. PWS Publishing Company (1997) ISBN: 0-534-95262-3Google Scholar
  18. 18.
    Spellman, et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9, 3273–3297 (1998), Web site with complementary material Google Scholar
  19. 19.
    Telles, G.P.: An almost-linear time algorithm for PRQ trees and a scheme for clustering of expressed sequences of sugarcane. PhD thesis, Istitute of Computing, University of Campinas, Campinas, Brazil (2002) (in Portuguese)Google Scholar
  20. 20.
    Zdobnov, E.M., Lopez, R., Apweiler, R., Etzold, T.: The EBI SRS server — New features. Bioinformatics 18(8), 1149–1150 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • João Meidanis
    • 1
    • 2
  1. 1.Scylla BioinformaticsCampinasBrazil
  2. 2.Institute of ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations