Advertisement

A Bit-Parallel Suffix Automaton Approach for (δ,γ)-Matching in Music Retrieval

  • Maxime Crochemore
  • Costas S. Iliopoulos
  • Gonzalo Navarro
  • Yoan J. Pinzon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2857)

Abstract

(δ,γ)-Matching is a string matching problem with applications to music retrieval. The goal is, given a pattern P 1... m and a text T 1... n on an alphabet of integers, find the occurrences P′ of the pattern in the text such that (i) ∀ 1 ≤ i ≤ m,  |P i  − P i | ≤ δ, and (ii) ∑ 1 ≤ i ≤ m |P i  − P i | ≤ γ. Several techniques for (δ,γ)-matching have been proposed. In this paper we show that a classical string matching technique that combines bit-parallelism and suffix automata can be successfully adapted to this problem. This is the first character-skipping algorithm that skips characters using both δ and γ. We implemented our algorithm and drew experimental results on real music showing that our algorithm is superior to current alternatives.

Keywords

String Match Text Character Absolute Pitch Pattern Match Algorithm Pitch Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeza-Yates, R.: Text retrieval: Theory and practice. In: 12th IFIP World Computer Congress, vol. I, pp. 465–476. Elsevier Science, Amsterdam (1992)Google Scholar
  2. 2.
    Baeza-Yates, R., Gonnet, G.: A new approach to text searching. Comm. ACM 35(10), 74–82 (1992)CrossRefGoogle Scholar
  3. 3.
    Baeza-Yates, R., Gonnet, G.: Fast string matching with mismatches. Information and Computation 108(2), 187–199 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baeza-Yates, R., Navarro, G.: Faster approximate string matching. Algorithmica 23(2), 127–158 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the ACM 20(10), 762–772 (1977)CrossRefGoogle Scholar
  6. 6.
    Cambouropoulos, E., Crawford, T., Iliopoulos, C.: Pattern processing in melodic sequences: Challenges, caveats and prospects. In: Proc. Artificial Intelligence and Simulation of Behaviour (AISB 1999) Convention, pp. 42–47 (1999)Google Scholar
  7. 7.
    Cambouropoulos, E., Crochemore, M., Iliopoulos, C., Mouchard, L., Pinzon, Y.J.: Algorithms for computing approximate repetitions in musical sequences. In: Proc. 10th Australasian Workshop on Combinatorial Algorithms (AWOCA 1999), pp. 129–144 (1999)Google Scholar
  8. 8.
    Cambouropoulos, E., Crochemore, M., Iliopoulos, C.S., Mouchard, L., Pinzon, Y.J.: Algorithms for computing approximate repetitions in musical sequences. Int. J. Comput. Math. 79(11), 1135–1148 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Crawford, T., Iliopoulos, C., Raman, R.: String matching techniques for musical similarity and melodic recognition. Computing in Musicology 11, 73–100 (1998)Google Scholar
  10. 10.
    Crochemore, M., Iliopoulos, C., Lecroq, T., Pinzon, Y.J., Plandowski, W., Rytter, W.: Occurence and substring heuristics for δ-matching. Fundamenta Informaticae 55, 1–15 (2003)MathSciNetGoogle Scholar
  11. 11.
    Crochemore, M., Iliopoulos, C., Lecroq, T., Plandowski, W., Rytter, W.: Three heuristics for δ-matching: δ-bm algorithms. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 178–189. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Crochemore, M., Rytter, W.: Text algorithms. Oxford University Press, Oxford (1994)zbMATHGoogle Scholar
  13. 13.
    Czumaj, A., Crochemore, M., Gasieniec, L., Jarominek, S., Lecroq, T., Plandowski, W., Rytter, W.: Speeding up two string-matching algorithms. Algorithmica 12, 247–267 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lemström, K., Tarhio, J.: Searching monophonic patterns within polyphonic sources. In: Proc. of Content-Based Multimedia Information Access, vol. 2, pp. 1261–1279 (2000)Google Scholar
  15. 15.
    McGettrick, P.: MIDIMatch: Musical Pattern Matching in Real Time. MSc. Dissertation, York University, U.K. (1997)Google Scholar
  16. 16.
    Navarro, G., Baeza-Yates, R.: Improving an algorithm for approximate string matching. Algorithmica 30(4), 473–502 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Navarro, G., Raffinot, M.: Fast and flexible string matching by combining bit-parallelism and suffix automata. ACM Journal of Experimental Algorithmics (JEA) 5(4) (2000)Google Scholar
  18. 18.
    Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings – Practical on-line rch algorithms for texts and biological sequences. Cambridge University Press, Cambridge (2002) ISBN 0-521-81307-7Google Scholar
  19. 19.
    Roland, P., Ganascia, J.: Musical pattern extraction and similarity assessment. In: Miranda, E. (ed.) Readings in Music and Artificial Intelligence, pp. 115–144. Harwood Academic Publishers, England (2000)Google Scholar
  20. 20.
    Smith, L.A., Chiu, E.F., Scott, B.L.: A speech interface for building musical score collections. In: Proc. of the fifth ACM conference on Digital libraries, pp. 165–173. ACM Press, New York (2000)CrossRefGoogle Scholar
  21. 21.
    Sunday, D.: A very fast substring searching algorithm. Comm. ACM 33(8), 132–142 (1990)CrossRefGoogle Scholar
  22. 22.
    Ukkonen, E.: Approximate string matching over suffix trees. In: Proc. 4th Annual Symposium on Combinatorial Pattern Matching (CPM 1993), pp. 228–242 (1993)Google Scholar
  23. 23.
    Wu, S., Manber, U.: Fast text searching allowing errors. Comm. ACM 35(10), 83–91 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Maxime Crochemore
    • 1
    • 2
  • Costas S. Iliopoulos
    • 2
  • Gonzalo Navarro
    • 3
  • Yoan J. Pinzon
    • 2
    • 4
  1. 1.Institut Gaspard-MongeUniversité de Marne-la-ValléeFrance
  2. 2.Dept. of Computer ScienceKing’s CollegeLondonEngland
  3. 3.Dept. of Computer ScienceUniversity of ChileChile
  4. 4.Laboratorio de Cómputo EspecializadoUniversidad Autónoma de BucaramangaColombia

Personalised recommendations