Ranking Structured Documents Using Utility Theory in the Bayesian Network Retrieval Model

  • Fabio Crestani
  • Luis M. de Campos
  • Juan M. Fernández-Luna
  • Juan F. Huete
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2857)


In this paper a new method based on Utility and Decision theory is presented to deal with structured documents. The aim of the application of these methodologies is to refine a first ranking of structural units, generated by means of an Information Retrieval Model based on Bayesian Networks. Units are newly arranged in the new ranking by combining their posterior probabilities, obtained in the first stage, with the expected utility of retrieving them. The experimental work has been developed using the Shakespeare structured collection and the results show an improvement of the effectiveness of this new approach.


Utility Function Bayesian Network Structural Unit Decision Theory Expected Utility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acid, S., de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: An information retrieval model based on simple Bayesian networks. International Journal of Intelligent Systems 18, 251–265 (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Baeza-Yates, R., Ribeiro-Nieto, B.: Modern Information Retrieval. Addison-Wesley, Harlow (1999)Google Scholar
  3. 3.
    Baumgarten, C.: A probabilistic model for distributed information retrieval. In: Proceedings of ACM–SIGIR Conference, pp. 258–266 (1997)Google Scholar
  4. 4.
    Bordogna, G., Pasi, G.: Flexible representation and querying of heterogeneous structured documents. Kibernetika 36(6), 617–633 (2000)Google Scholar
  5. 5.
    Chiaramella, Y.: Information retrieval and structured documents. In: Agosti, M., Crestani, F., Pasi, G. (eds.) ESSIR 2000. LNCS, vol. 1980, pp. 291–314. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Crestani, F., de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: A multilayered Bayesian network model for structured document retrieval. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 74–86. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: A layered Bayesian network model for document retrieval. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.K. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 169–182. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Graves, A., Lalmas, M.: Video retrieval using an MPEG-7 based inference network. In: Proceedings of the 25th ACM–SIGIR Conference, pp. 339–346 (2002)Google Scholar
  9. 9.
    French, S.: Decision Theory. An introduction to the Mathematics of Rationality. Ellis Horwood Limited. Wiley, Chichester (1986)Google Scholar
  10. 10.
    Kazai, G., Lalmas, M., Reid, J.: The Shakespeare test collection, Available at
  11. 11.
    Kazai, G., Lalmas, M., Roelleke, T.: Focussed structured document retrieval. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 241–247. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Lalmas, M., Ruthven, I.: Representing and retrieving structured documents with Dempster-Shafer’s theory of evidence: Modelling and evaluation. Journal of Documentation 54(5), 529–565 (1998)CrossRefGoogle Scholar
  13. 13.
    Myaeng, S.H., Jang, D.H., Kim, M.S., Zhoo, Z.C.: A flexible model for retrieval of SGML documents. In: Proceedings of the 21th ACM–SIGIR Conference, pp. 138–145 (1998)Google Scholar
  14. 14.
    Piwowarski, B., Faure, G.E., Gallinari, P.: Bayesian networks and INEX. In: Proceedings of the INEX Workshop, pp. 7–12 (2002)Google Scholar
  15. 15.
    Roelleke, T., Lalmas, M., Kazai, G., Ruthven, I., Quicker, S.: The accessibility dimension for structured document retrieval. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.K. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 284–302. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Shachter, R.D.: Probabilistic Inference and Influence Diagrams. Operations Research 36(5), 527–550 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Fabio Crestani
    • 1
  • Luis M. de Campos
    • 2
  • Juan M. Fernández-Luna
    • 2
  • Juan F. Huete
    • 2
  1. 1.Department of Computer and Information SciencesUniversity of StrathclydeGlasgowScotland, UK
  2. 2.Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S.I. InformáticaUniversidad de GranadaGranadaSpain

Personalised recommendations