We advance and discuss a framework suitable to study theoretical implications and practical impact of language evolution and lexicon sharing in an open distributed multi-agent system. In our approach, the assumption of autonomy plays a key role to preserve the opportunity for the agents of local encoding of meanings. We consider the application scenario of Web services, where we conceive the problem of advertisement as a matter of sharing a denotational language. We provide a precise formulation of the agents’ behavior within a game-theoretical setting. As an important consequence of our “advertising games,” we interpret the problem of knowledge interoperability and management in the light of evolutionary dynamics and learning in games. Our methodology is inspired by work in natural language semantics and “language games.”


Web information systems and services semantic interoperability negotiation protocols peer-to-peer cooperation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agostini, A., Avesani, P.: Advertising games for the web services. Technical report, ITC-irst, Trento, Italy (April 2003)Google Scholar
  2. 2.
    Agostini, A., Avesani, P.: A peer-to-peer advertising game. Technical report, ITC-irst, Trento, Italy (June 2003)Google Scholar
  3. 3.
    Bonifacio, M., Bouquet, P.: Una visione distribuita del sapere organizzativo: il ruolo dell’ Intelligenza Artificiale. Sistemi e Impresa 653(6) (2002)Google Scholar
  4. 4.
    Bonifacio, M., Bouquet, P., Mameli, G., Nori, M.: KEx: A Peer-to-Peer solution for distributed knowledge management. In: Karagiannis, D., Reimer, U. (eds.) PAKM 2002. LNCS (LNAI), vol. 2569, pp. 490–500. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bonifacio, M., Bouquet, P., Traverso, P.: Enabling distributed knowledge management. managerial and technological implications. Novatica and Informatik/Informatique III(1) (2002)Google Scholar
  6. 6.
    Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description language (2001), Electronically available at
  7. 7.
    Giunchiglia, F., Zaihrayeu, I.: Making peer databases interact: A vision for an architecture supporting data coordination. In: Klusch, M., Ossowski, S., Shehory, O. (eds.) CIA 2002. LNCS(LNAI), vol. 2446, p. 18. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Gudgin, M., Hadley, M., Moreau, J.-J., Frystyk, H.: SOAP messaging framework (October 2001), Electronically available at
  9. 9.
    Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems That Learn - An Introduction to Learning Theory, 2nd edn. The MIT Series in Learning, Development, and Conceptual Change, vol. 22. The MIT Press, Cambridge (1999)Google Scholar
  10. 10.
    Lawrence, S.: Context in Web Search. IEEE Data Engineering Bulletin 23(3), 25–32 (2000)Google Scholar
  11. 11.
    Madhavan, J., Bernstein, P.A., Domingos, P., Halevy, A.Y.: Representing and reasoning about mappings between domain models. In: Dechter, R., Kearns, M., Sutton, R. (eds.) Proceedings of the 18th National Conference on Artificial Intelligence (AAAI 2002) and of the 14th Innovative Applications of Artificial Intelligence Conference (IAAI 2002), Menlo Park, CA, pp. 80–86. AAAI Press/The MIT Press (2002)Google Scholar
  12. 12.
    McIlraith, S.A., Son, T.C., Zeng, H.: Semantic Web Services. IEEE Intelligent Systems 16(2), 46–53 (2001)CrossRefGoogle Scholar
  13. 13.
    Navarro-Prieto, R., Scaife, M., Rogers, Y.: Cognitive strategies in web searching. In: Proceedings of the Fifth Conference on Human Factors & the Web (HFWEB 1999). NIST (1999)Google Scholar
  14. 14.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  15. 15.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Serafini, L., Bouquet, P., Magnini, B., Zanobini, S.: An algorithm for matching contextualized schemas via SAT. Technical Report 0301-06, ITC-irst, Trento, Italy (January 2003)Google Scholar
  17. 17.
    Steels, L.: Perceptually grounded meaning creation. In: Demazeau, Y. (ed.) Proceedings of the Second International Conference on Multi-agent Systems (ICMAS 1996), pp. 338–344. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  18. 18.
    Steels, L.: Self-organizing vocabularies. In: Langton, C., Shimohara, T. (eds.) Proceedings of the V Alife Conference. The MIT Press, Cambridge (1996)Google Scholar
  19. 19.
    Steels, L.: The origins of syntax in visually grounded robotic agents. Artificial Intelligence 103, 133–156 (1998)zbMATHCrossRefGoogle Scholar
  20. 20.
    Steels, L.: Language games for autonomous robots. IEEE Intelligent Systems 16(5), 16–22 (2001)Google Scholar
  21. 21.
    Steels, L., Kaplan, F.: Situated grounded word semantics. In: Dean, T. (ed.) Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 862–867. Morgan Kaufmann, San Francisco (1999)Google Scholar
  22. 22.
    Steels, L., Kaplan, F., McIntyre, A., Van Looveren, J.: Crucial factors in the origins of word-meanings. In: Wray, A. (ed.) The Transition to Language, pp. 214–217. Oxford University Press, Oxford (2002)Google Scholar
  23. 23.
    Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, New York (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alessandro Agostini
    • 1
  • Paolo Avesani
    • 1
  1. 1.ITC-IRST TrentoPovo, Trento

Personalised recommendations