Advertisement

Ontology-Driven Knowledge Logistics Approach as Constraint Satisfaction Problem

  • Alexander Smirnov
  • Mikhail Pashkin
  • Nikolai Chilov
  • Tatiana Levashova
  • Andrew Krizhanovsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2888)

Abstract

The paper is devoted to knowledge logistics problems. Knowledge logistics with regard to individual user requirements, available knowledge sources, and current situation analysis in an open information environment addresses problems of intelligent support of user activities. Knowledge logistics is guided by the principles underlying both Web services and Semantic Web as understandability of knowledge representation both to humans and machines, enabling knowledge sharing and reuse, ensuring intellectual support, etc. The paper describes an approach to knowledge logistics problem based on ontology-driven methodology and constraint satisfaction / propagation technology. Compatibility of object-oriented constraint network notation with DAML+OIL formalism is considered. Applicability of the approach to actual content is illustrated through a case study based on Binni scenario of humanitarian coalition-based operation.

Keywords

Constraint Satisfaction Constraint Satisfaction Problem Knowledge Source User Request Knowledge Logistics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (Clin-Act, 2000).
    Clin-Act (Clinical Activity), The ON9.3 Library of Ontologies: Ontology Group of IP-CNR (a part of the Institute of Psychology of the Italian National Research Council (CNR)) (December 2000), http://saussure.irmkant.rm.cnr.it/onto/
  2. (Cyc, 1998).
    Hpkb-Upper-Level-Kernel-Latest: Upper Cyc / HPKB IKB Ontology with links to SENSUS, Version 1.4, Ontolingua Ontology Server (February 1998), http://www-ksl-svc.stanford.edu:5915
  3. (DAML+OIL, 2001).
    Reference description of the ontology markup language, van Harmelen, F., Horrocks, I. (eds.) (2001), URL: http://www.daml.org/2001/03/reference
  4. (Fensel et. al., 2003)
    Fensel, D., et al.: On-To-Knowledge: Semantic Web Enabled Knowledge Management. Submitted to: Special Issue of Computer on Web Intelligence (WI). URL: http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/2002_otk_ieee.pdf
  5. (FIPA, 2000 – 2001).
    FIPA Agent Software Integration Specification. Foundation for Intelligent Physical Agents, 00079 (2000–2001), URL: http://www.fipa.org/specs/fipa00079/
  6. (Guarino, 1998).
    Guarino, N.: Formal Ontology and Information Systems. In: Proceedings of FOIS 1998, Trento, Italy, pp. 3–15. IOS Press, Amsterdam (1998)Google Scholar
  7. (ILOG, 2003).
    ILOG Corporate Web-site (2003), URL: http://www.ilog.com
  8. (KIF, 1992).
    Knowledge Interchange Format, Genesereth, M.R., Fikes, R.E. (eds.). Version 3.0. Reference Manual (1992), URL: http://logic.stanford.edu/kif/Hypertext/kif-manual.html
  9. (Loom, 1997).
    Weather Theory. Loom ontology browser, Information sciences Institute, The University of Southern California (1997), http://sevak.isi.edu:4676/loom/shuttle.html
  10. (Marik, Pechoucek, and Bárta, 2002).
    Marik, V., Pechoucek, M., Bárta, J.: Reduction of Task Complexity in Coalition Planning. In: Proceedings of the International Symposium From Agent Theory to Agent Implementation (AT2AI-3). Vienna, Austria (EU), April 3-5 (2002), URL: http://www.ai.univie.ac.at/%7Epaolo/conf/at2ai3/final/at2ai3Marik.pdf
  11. (NAICS, 2001).
    North American Industry Classification System code, DAML Ontology Library, Stanford University (July 2001), http://opencyc.sourceforge.net/daml/naics.daml
  12. (Rathmell, 1999).
    Rathmell, R.A.: A Coalition Force Scenario “Binni – Gateway to the Golden Bowl of Africa. In: Tate, A. (ed.)Proceedings on the International Workshop on Knowledge-Based Planning for Coalition Forces. Edinburgh, Scotland, pp. 115–125 (1999)Google Scholar
  13. (Smirnov et al., 2002)
    Smirnov, A., Pashkin, M., Chilov, N., Levashova, T.: Multi-agent Architecture for Knowledge Fusion from Distributed Sources. In: Dunin-Keplicz, B., Nawarecki, E. (eds.) CEEMAS 2001. LNCS (LNAI), vol. 2296, pp. 293–302. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. (Smirnov et al., 2003a)
    Smirnov, A., Pashkin, M., Chilov, N., Levashova, T., Haritatos, F.: Knowledge Source Network Configuration Approach to Knowledge Logistics. International Journal of General Systems. Taylor & Francis Group 32(3), 251–269 (2003)zbMATHCrossRefGoogle Scholar
  15. (Smirnov et al., 2003b)
    Smirnov, A., Pashkin, M., Chilov, N., Levashova, T.: Knowledge Logistics in Information Grid. Special Issue of Future Generation Computer Systems. Zhuge, H. (ed.) (accepted in April 2003)Google Scholar
  16. (UNSPSC, 2001).
    The UNSPSC Code (Universal Standard Products and Services Classification Code), DAML Ontology Library, Stanford University (January 2001), http://www.ksl.stanford.edu/projects/DAML/UNSPSC.daml
  17. (WebOnto, 2002).
    WebOnto: Knowledge Media Institute (KMI), The Open University, UK (2002), http://eldora.open.ac.uk:3000/webonto
  18. (Weiss, 2000).
    Weiss, G. (ed.): Multiagent Systems: a Modern Approach to Distributed Artificial Intelligence, p. 622. The MIT Press, Cambridge (2000)Google Scholar
  19. (WordNet, 2003).
    WordNet Homepage (2003), URL: http://www.cogsci.princeton.edu/~wn/

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alexander Smirnov
    • 1
  • Mikhail Pashkin
    • 1
  • Nikolai Chilov
    • 1
  • Tatiana Levashova
    • 1
  • Andrew Krizhanovsky
    • 1
  1. 1.St. Petersburg Institute for Informatics and Automation of the Russian Academy of SciencesSt PetersburgRussia

Personalised recommendations