Advertisement

Taxonomy-Based Context Conveyance for Web Search

  • Said Mirza Pahlevi
  • Hiroyuki Kitagawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2888)

Abstract

Taxonomy-based search services such as web directories are good starting points for users to search information needed from the web. In this paper we propose a method employing the search services to facilitate searches in any web search interfaces that support Boolean queries. The proposed method enables one to convey his current search context on taxonomy of a taxonomy-based search service to the searches conducted with the web search interfaces. The basic idea is to learn the search context in the form of a Boolean condition that is commonly accepted by many web search interfaces, and use the condition to modify the user query before forwarding it to the web search interfaces. To guarantee that the modified query can always be processed by the web search interfaces and to make the method adaptive to different user requirements on search result effectiveness, we have developed a new fast classification rule learning algorithm. Extensive experiments show that the proposed method can significantly improve the search result effectiveness of the web search interfaces.

Keywords

Search Result User Query Rule Construction Search Service Query Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Pahlevi, S.M., Kitagawa, H.: TAX-PQ: Dynamic taxonomy probing and query modification for topic-focused web search. In: 8th International Conference on Database Systems for Advanced Applications (DASFAA 2003), pp. 91–100 (2003)Google Scholar
  8. 8.
    Cohen, W.W.: Fast effective rule induction. In: International Conference on Machine Learning, pp. 115–123 (1995)Google Scholar
  9. 9.
    Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3, 261–283 (1989)Google Scholar
  10. 10.
    Ding, J., Berleant, D., Nettleton, D., Wurtele, E.: Mining medline: Abstracts, sentences, or phrases? In: Pacific Symposium on Biocomputing (PSB 2002), pp. 326–337 (2002)Google Scholar
  11. 11.
    Quinlan, J.: Learning logical definitions from relations. Machine Learning 5 (1990)Google Scholar
  12. 12.
    Glover, E., et al.: Improving category specific web search by learning query modifications. In: Symposium on Applications and the Internet, SAINT, San Diego, CA (2001)Google Scholar
  13. 13.
    Glover, E.J., Lawrence, S., Gordon, M.D., Birmingham, W.P., Giles, C.L.: Web search – your way. Communications of the ACM (1999) (accepted for publication)Google Scholar
  14. 14.
    Flake, G., Glover, E., Lawrence, S., Giles, C.L.: Extracting query modifications from nonlinear SVMs. In: International World Wide Web Conference, Honolulu, Hawaii (2002)Google Scholar
  15. 15.
    Oyama, S., Kokubo, T., Ishida, T., Yamada, T., Kitamura, Y.: Keyword spices: A new method for building domain-specific web search engines. In: IJCAI, pp. 1457–1466 (2001)Google Scholar
  16. 16.
    Budzik, J., Hammond, K.: Watson: Anticipating and contextualizing information needs. In: 62nd Annual Meeting of the American Society for Information Science, Medford, NJ (1999)Google Scholar
  17. 17.
    Leake, D.B., Scherle, R., Budzik, J., Hammond, K.: Selecting task-relevant sources for just-in-time retrieval. In: AAAI 1999 Workshop on Intelligent Information Systems, AAAI Press, Menlo Park (1999)Google Scholar
  18. 18.
    Budzik, J., Hammond, K.: User interactions with everyday applications as context for just-in-time information access. In: Proceedings of the 2000 International Conference on Intelligent User Interfaces, New Orleans, Louisiana. ACM Press, New York (2000)Google Scholar
  19. 19.
    Budzik, J., Hammond, K.J., Birnbaum, L., Krema, M.: Beyond similarity. In: Proceedings of the 2000 Workshop on Artificial Intelligence and Web Search, AAAI Press, Menlo Park (2000)Google Scholar
  20. 20.
    Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.: Placing search in context: the concept revisited. In: World Wide Web, pp. 406–414 (2001)Google Scholar
  21. 21.
    Rhodes, J., Maes, P.: Just-in-time information retrieval agents. IBM Systems Journal special issue on the MIT Media Laboratory 39, 685–704 (2000)Google Scholar
  22. 22.
    Rhodes, B., Starner, T.: The remembrance agent: A continuously running automated information retrieval system. In: The Proceedings of The First International Conference on The Practical Application of Intelligent Agents and Multi Agent Technology (PAAM 1996), pp. 487–495 (1996)Google Scholar
  23. 23.
    Rhodes, B.: Margin notes: Building a contextually aware associative memory. In: Proceedings of the International Conference on Intelligent User Interfaces, IUI 2000 (2000)Google Scholar
  24. 24.
    Balabanovic, M.: An adaptive web page recommendation service. In: Johnson, W.L., Hayes-Roth, B. (eds.) Proceedings of the First International Conference on Autonomous Agents (Agents 1997), pp. 378–385. ACM Press, New York (1997)CrossRefGoogle Scholar
  25. 25.
    Chen, L., Sycara, K.: WebMate: A personal agent for browsing and searching. In: Sycara, K.P., Wooldridge, M. (eds.) Proceedings of the 2nd International Conference on Autonomous Agents (Agents 1998), pp. 132–139. ACM Press, New York (1998)CrossRefGoogle Scholar
  26. 26.
    Lieberman, H.: Letizia: An agent that assists web browsing. In: Mellish, C.S. (ed.) Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 1995), Montreal, Quebec, Canada, pp. 924–929. Morgan Kaufmann publishers Inc., San Mateo (1995)Google Scholar
  27. 27.
    Armstrong, R., Freitag, D., Joachims, T., Mitchell, T.: Webwatcher: A learning apprentice for the world wide web. In: AAAI Spring Symposium on Information Gathering, pp. 6–12 (1995)Google Scholar
  28. 28.
    Joachims, T., Freitag, D., Mitchell, T.M.: Web watcher: A tour guide for the world wide web. In: IJCAI, vol. (1), pp. 770–777 (1997)Google Scholar
  29. 29.
    Pazzani, M., Nguyen, L., Mantik, S.: Learning from hotlists and coldlists: towards a www information filtering and seeking agent (1995)Google Scholar
  30. 30.
    Pazzani, M.J., Muramatsu, J., Billsus, D.: Syskill webert: Identifying interesting web sites. In: AAAI/IAAI, vol. 1, pp. 54–61 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Said Mirza Pahlevi
    • 1
  • Hiroyuki Kitagawa
    • 2
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba, IbarakiJapan
  2. 2.University of TsukubaTsukuba, IbarakiJapan

Personalised recommendations