Advertisement

“Almost Automatic” and Semantic Integration of XML Schemas at Various “Severity” Levels

  • Pasquale De Meo
  • Giovanni Quattrone
  • Giorgio Terracina
  • Domenico Ursino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2888)

Abstract

This paper presents a novel approach for the integration of a set of XML Schemas. The proposed approach is specialized for XML, is almost automatic, semantic and “light”. As a further, original, peculiarity, it is parametric w.r.t. a “severity” level against which the integration task is performed. The paper describes the approach in all details, illustrates various theoretical results, presents the experiments we have performed for testing it and, finally, compares it with various related approaches already proposed in the literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    XML Schema Part 1: Structures. W3C Recommendation (2001), http://www.w3.org/TR/xmlschema-1
  2. 2.
    Castano, S., De Antonellis, V., De Capitani di Vimercati, S.: Global viewing of heterogeneous data sources. Transactions on Data and Knowledge Engineering 13(2), 277–297 (2001)CrossRefGoogle Scholar
  3. 3.
    Do, H., Rahm, E.: COMA- a system for flexible combination of schema matching approaches. In: Proc. of the International Conference on Very Large Databases (VLDB 2002), pp. 610–621, Hong Kong, China, VLDB Endowment (2002)Google Scholar
  4. 4.
    Doan, A., Domingos, P., Halevy, A.: Reconciling schemas of disparate data sources: a machine-learning approach. In: Proc. of the International Conference on Management of Data (SIGMOD 2001), Santa Barbara, California, USA, pp. 509–520. ACM Press, New York (2001)CrossRefGoogle Scholar
  5. 5.
    Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontologies on the Semantic Web. In: Proc. of the International Conference on World Wide Web (WWW 2002), Honolulu, Hawaii, USA, pp. 662–673. ACM Press, New York (2002)CrossRefGoogle Scholar
  6. 6.
    dos Santos Mello, R., Castano, S., Heuser, C.A.: A method for the unification of XML schemata. Information & Software Technology 44(4), 241–249 (2002)CrossRefGoogle Scholar
  7. 7.
    Fankhauser, P., Kracker, M., Neuhold, E.J.: Semantic vs. structural resemblance of classes. ACM SIGMOD RECORD 20(4), 59–63 (1991)CrossRefGoogle Scholar
  8. 8.
    Galil, Z.: Efficient algorithms for finding maximum matching in graphs. ACM Computing Surveys 18, 23–38 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Halpin, T.: Object-Role Modeling (ORM-NIAM). In: Bernus, P., Mertins, K., Schmidt, G. (eds.) Handbook on Architectures of Information Systems, ch. 4, pp. 81–102. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Lee, M.L., Yang, L.H., Hsu, W., Yang, X.: XClust: clustering XML schemas for effective integration. In: Proc. of the International Conference on Information and Knowledge Management (CIKM 2002), McLean, Virginia, USA, pp. 292–299. ACM Press, New York (2002)Google Scholar
  11. 11.
    Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with Cupid. In: Proc. of the International Conference on Very Large Data Bases (VLDB 2001), Roma, Italy, pp. 49–58. Morgan Kaufmann, San Francisco (2001)Google Scholar
  12. 12.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A versatile graph matching algorithm and its application to schema matching. In: Proc. of the International Conference on Data Engineering (ICDE 2002), San Jose, California, USA, pp. 117–128. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  13. 13.
    Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A programming platform for generic model management. In: Proc. of the International Conference on Management of Data (SIGMOD 2003), San Diego, California, USA, pp. 193–204. ACM Press, New York (2003)CrossRefGoogle Scholar
  14. 14.
    Miller, A.G.: WordNet: A lexical database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  15. 15.
    Palopoli, L., Saccà, D., Terracina, G., Ursino, D.: Uniform techniques for deriving similarities of objects and subschemes in heterogeneous databases. IEEE Transactions on Knowledge and Data Engineering 15(2), 271–294 (2003)CrossRefGoogle Scholar
  16. 16.
    Passi, K., Lane, L., Madria, S.K., Sakamuri, B.C., Mohania, M.K., Bhowmick, S.S.: A model for XML Schema integration. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 193–202. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    Rodriguez-Gianolli, P., Mylopoulos, J.: A semantic approach to XML-based data integration. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 117–132. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Pasquale De Meo
    • 1
  • Giovanni Quattrone
    • 1
  • Giorgio Terracina
    • 2
  • Domenico Ursino
    • 1
  1. 1.DIMETUniversità Mediterranea di Reggio CalabriaReggio CalabriaItaly
  2. 2.Dipartimento di MatematicaUniversità della CalabriaRende CSItaly

Personalised recommendations