Advertisement

Communicating Vague Spatial Concepts in Human-GIS Interactions: A Collaborative Dialogue Approach

  • Guoray Cai
  • Hongmei Wang
  • Alan M. MacEachren
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2825)

Abstract

Natural language requests involving vague spatial concepts are not easily communicated to a GIS because the meaning of spatial concepts depends largely on the contexts (such as task, spatial contexts, and user’s personal background) that may or may not be available or specified in the system. To address such problems, we developed a collaborative dialogue approach that enables the system and the user to construct shared knowledge about relevant contexts. The system is able to anticipate what contextual knowledge must be shared, and to form a plan to exchange contextual information based on the system’s belief on who knows what. To account those user contexts that are not easily communicated by language, direct feedback approach is used to refine the system’s belief so that the intended meaning is properly grounded. The approach is implemented as a dialogue agent, GeoDialogue, and is illustrated through an example dialogue involving the communication of the vague spatial concept near.

Keywords

Geographical Information System Contextual Information Belief Status Spatial Object Contextual Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frank, A.U., Mark, D.M.: Language issues for GIS. In: Macguire, D., Goodchild, M. F. and Rhind, D(eds): Geographical Information Systems: Principles and Applications, pp. 147-163. Wiley, New York (1991)Google Scholar
  2. 2.
    Mark, D.M., Frank, A.U.: User interfaces for Geographic Information Systems: report on the specialist meeting. National Center for Geographic Information and Analysis (1992)Google Scholar
  3. 3.
    Mark, D.M., Svorou, S., Zubin, D.: Spatial terms and spatial concepts: Geographic, cognitive, and linguistic perspectives. In: Proceedingsof International Geographic Information Systems (IGIS) Symposium: The Research Adgenda, Arlington, VA, pp. 101–112 (1987)Google Scholar
  4. 4.
    Shapiro, S.C., Chalupski, H., Chou, H.C.: Linking ARC/INFO with SNACTor. National Center for geographic Information and Analysis, Santa Barbara (1991)Google Scholar
  5. 5.
    Neal, J.G., Shapiro, S.C.: Intelligent Multi-Media Interface Technology. In: Sullivan, J.W., Tyler, S.W. (eds.) Architectures for Intelligent Interfaces: Elements and Prototypes, pp. 11–44. Addison-Wesley, Massachusetts (1991)Google Scholar
  6. 6.
    Zue, V., Glass, J., Goddeau, D., Goodine, D., Leung, H., McCandless, M., Phillips, M., Polfroni, J., Seneff, S., Whitney, D.: Recent progress on the MIT voyager spoken language system. In: Proceedings of the ICSLP, pp. 1317–1320 (1990)Google Scholar
  7. 7.
    Lokuge, I., Ishizaki, S.: Geospace: An interactive visualization system for exploring complex information spaces. In: CHI 1995 Conference Proceedings, New York, pp. 409–414 (1995)Google Scholar
  8. 8.
    Wang, F.: Towards a natural language user interface: An approach of fuzzy query. International Journal of Geographical Information Systems 2, 143–162 (1994)Google Scholar
  9. 9.
    Wang, F.: Handling Grammatical Errors, Ambiguity and Impreciseness in GIS Natural Language Queries. Transactions in GIS 1, 103–121 (2003)CrossRefGoogle Scholar
  10. 10.
    Egenhofer, M.J., Shariff, A.R.: Metric details for natural-language spatial relations. ACM Transactions on Information Systems 4, 295–321 (1998)CrossRefGoogle Scholar
  11. 11.
    Egenhofer, M.J.: Query Processing in Spatial-Query-by-Sketch. Journal of Visual Languages and Computing 2, 403–424 (1997)CrossRefGoogle Scholar
  12. 12.
    Cohen, P.R., Johnston, M., McGee, D., Oviatt, S., Pittman, J., Smith, I., Chen, L., Clow, J.: QuickSet: multimodal interaction for distributed applications. In: Proceedings of the 5th ACM international conference on Multimedia, Seattle, Washington, pp. 31–40 (1997)Google Scholar
  13. 13.
    Florence, J., Hornsby, K., Egenhofer, M.J.: The GIS wallboard: interactions with spatial information on large-scale displays. In: Molenaar, M. (ed.) International Symposium on Spatial Data Handling, vol. 7, pp. 449–463. Taylor and Francis, Delft (1996)Google Scholar
  14. 14.
    Sharma, R., Pavlovic, V.I., Huang, T.S.: Toward a multimodal human computer interface. Proceedings of the IEEE 5, 853–869 (1998)Google Scholar
  15. 15.
    Sharma, R., Poddar, I., Ozyildiz, E., Kettebekov, S., Kim, H., Huang, T.S.: Toward Interpretation of Natural Speech/Gesture: Spatial Planning on a Virtual Map. In: Proceedings of ARL Advanced Displays Annual Symposium, Adelphi, MD, pp. 35–39 (1999)Google Scholar
  16. 16.
    Kettebekov, S., Krahnstöver, N., Leas, M., Polat, E., Raju, H., Schapira, E., Sharma, R.: i2Map: Crisis Management using a Multimodal Interface. In: ARL Federate Laboratory 4th Annual Symposium, College Park, MD (2000)Google Scholar
  17. 17.
    Rauschert, I., Agrawal, P., Fuhrmann, S., Brewer, I., Wang, H., Sharma, R., Cai, G., MacEachren, A.: Designing a User-Centered, Multimodal GIS Interface to Support Emergency Management. In: ACM International Symposium on Advances in Geographical Information Systems (2002)Google Scholar
  18. 18.
    Robinson, V.B.: Individual and multipersonal fuzzy spatial relations acquired using human- machine interaction. Fuzzy Sets and Systems 1, 133–145 (2000)CrossRefGoogle Scholar
  19. 19.
    Duckham, M., Mason, K., Stell, J., Worboys, M.F.: A formal approach to imperfection in geographic information. In: Computers, Environments and Urban Systems, pp. 89–103 (2001)Google Scholar
  20. 20.
    Goodchild, M.F.: Sharing imperfect data. In: Onsrud, H.J., Rushton, G. (eds.) Sharing geographic information, Rutgers, New Jersey, pp. 413–425 (1995)Google Scholar
  21. 21.
    Fisher, P.: Sorites paradox and vague geographies. In: Fuzzy Sets and Systems, pp. 7–18 (2000)Google Scholar
  22. 22.
    Robinson, V.B.: Interactive Machine Acquisition of a Fuzzy Spatial Relation. Computers and Geosciences 6, 857–872 (1990)Google Scholar
  23. 23.
    Peuquet, D.J., Zhan, C.-X.: An algorithm to determine the directional relationship between arbitrarily-shaped polygons in the plane. In: Pattern Recognition, pp. 65–74 (1987)Google Scholar
  24. 24.
    Matsakis, P., Keller, J.M., Wendling, L., Marjamaa, J., Sjahputera, O.: Linguistic Description of Relative Positions in Images. IEEE Transactions On Systems, Man, And Cybernetics—Part B: Cybernetics 4, 573–588 (2001)Google Scholar
  25. 25.
    Egenhofer, M.J., Franzosa, R.: Point-set topological spatial relations. International Journal of Geographical Information Systems 2, 161–174 (1991)Google Scholar
  26. 26.
    Zhan, F.B., Lin, H.: Overlay of Two Simple Polygons with Indeterminate Boundaries. Transactions in GIS 1, 67–81 (2003)Google Scholar
  27. 27.
    Hazelton, N.W., Bennett, L., Masel, J.: Topological structures for 4-dimensional geographic information systems. Computers, Environment, and Urban Systems 3, 227– 237 (1992)Google Scholar
  28. 28.
    Zhan, F.B.: Topological Relations Between Fuzzy Regions. In: Proceedings of the 1997 ACM Symposium on Applied Computing, San Jose, CA, pp. 192–196 (1997)Google Scholar
  29. 29.
    Rosch, E.: Principles of Categorization. In: Rosch, E., Lloyd, B. (eds.) Cognition and Categorization, Erlbaum, Hillsdale (1978)Google Scholar
  30. 30.
    Rosch, E.: On the Internal Structure of Perceptual and Semantic Categories. In: Moore, T. (ed.) Cognitive Development and the Acquisition of Language, pp. 111–144. Academic Press, New York (1973)Google Scholar
  31. 31.
    Egenhofer, M.J.: User Interfaces. In: Nyerges, T., Mark, D.M., Laurini, R., Egenhofer, M.J. (eds.) Cognitive Aspects of Human-Computer Interaction for Geographic Information Systems, pp. 143–145. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  32. 32.
    Fisher, P., Orf, T.: An investigation of the meaning of near and close on a university campus. Computers, Environment and Urban Systems, 23–25 (1991)Google Scholar
  33. 33.
    Mark, D.M.: Spatial Representation: A Cognitive View. In: Maguire, D.J., Goodchild, M.F., Rhind, D.W., Longley, P. (eds.) Geographical Information Systems: Principles and Applications, vol. 1, pp. 81–89. John Wiley & Sons, New York (1999)Google Scholar
  34. 34.
    Mark, D.M., Frank, A.U.: NCGIA Initiative 2, Languages of Spatial Relations, Closing Report., Santa Barbara, CA: National Center for Geographic Information and Analysis (1992)Google Scholar
  35. 35.
    Landau, B., Jackendoff, R.: “What” and “where” in spatial language and spatial congnition. Behavioral and brain sciences, 217–265 (1993)Google Scholar
  36. 36.
    Worboys, M.F.: Nearness relations in environmental space. International Journal of Geographical Information Science 7, 633–651 (2001)Google Scholar
  37. 37.
    Worboys, M.F.: Communicating geographic information in context. Meeting on Fundamental Questions in GIScience, Manchester (2001)Google Scholar
  38. 38.
    Terveen, L.G.: Overview of human-computer collaboration. Knowledge-Based Systems 2-3, 67–81 (1995)Google Scholar
  39. 39.
    Grosz, B.J., Kraus, S.: Collaborative plans for complex group action. Artificial Intelligence 2, 269–357 (1996)Google Scholar
  40. 40.
    Lochbaum, K.E.: A collaborative planning model of intentional structure. Computational Linguistics 4, 525–572 (1998)Google Scholar
  41. 41.
    Oviatt, S.L.: Multimodal interfaces for dynamic interactive maps. In: Proceedings of the Conference on Human Factors in Computing Systems (CHI 1996), pp. 95–102 (1996)Google Scholar
  42. 42.
    Oviatt, S.L., Cohen, P.: Multimodal interfaces that process what comes naturally. Communications of the ACM 3, 45–53 (2000)Google Scholar
  43. 43.
    Rauschert, I., Sharma, R., Fuhrmann, S., Brewer, I., MacEachren, A.: Approaching a New Multimodal GIS-Interface. In: Proceeding of the 2nd International Conference on GIS (GIScience), CO, USA (2002)Google Scholar
  44. 44.
    Zhan, F.B.: A Fuzzy Set Model of Approximate Linguistic Terms in Descriptions of Binary Topological Relations between Simple Regions. In: Matsakis, P., Sztandera, L.M. (eds.) Applying Soft Computing in Defining Spatial Relations, pp. 179–202. Physica-Verlag, Heidelberg (2002)Google Scholar
  45. 45.
    Robinson, V.B., Frank, A.: About different kinds of uncertainty in collections of spatial data. In: Proceedings of 7th International Symposium on Computer-Assisted Cartography (1985)Google Scholar
  46. 46.
    Lloyd, R., Heivly, C.: Systematic distortions in urban cognitive maps. Annals of the Association of American Geographers 2, 191–207 (1987)Google Scholar
  47. 47.
    Denofsky, M.: How near is near? MIT AI Lab, Cambridge (1976)Google Scholar
  48. 48.
    Montello, D.: Scale and multiple psychologies of space. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, Springer, Heidelberg (1993)Google Scholar
  49. 49.
    Grosz, B.J., Sidner, C.L.: Attention, intentions, and the structure of discourse. Computational Linguistics 3, 175–204 (1986)Google Scholar
  50. 50.
    Lochbaum, K.E.: Using Collaborative Plans to Model the Intentional Structure of Discourse. Devision of Applied Sceince, p. 158. Harvard Univsersity, Cambridge (1994)Google Scholar
  51. 51.
    Grosz, B.J., Kraus, S.: Collaborative plans for group activities. In: Proceedings IJCAI 1993, Chambery, pp. 367–373 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Guoray Cai
    • 1
    • 3
  • Hongmei Wang
    • 1
    • 3
  • Alan M. MacEachren
    • 2
    • 3
  1. 1.School of Information Sciences and TechnologyPenn State UniversityUniversity ParkUSA
  2. 2.Department of GeographyPenn State UniversityUniversity ParkUSA
  3. 3.GeoVISTA CenterPenn State UniversityUniversity ParkUSA

Personalised recommendations