Advertisement

Relative Adjacencies in Spatial Pseudo-Partitions

  • Roderic Béra
  • Christophe Claramunt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2825)

Abstract

This paper introduces a relative adjacency operator that characterises mutual relationships between regions in a pseudo-partition. The relative adjacency is computerised from the dual graph of a spatial pseudo-partition. It is flexible enough to reflect different degrees and clusters of relative adjacencies by minimising or maximising the effect of neighbouring and remote regions. The properties of the relative adjacency are illustrated by some canonical examples and a case study.

Keywords

Spatial reasoning relative adjacency distance graph analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohn, A.G.: Qualitative spatial representation and reasoning techniques. In: KI 1997. Lecture Notes in Computer Science(LNAI), vol. 1303, pp. 1–30. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Pullar, D.V., Egenhofer, M.J.: Towards the defaction and use of topological relations among spatial objects. In: Proceedings of the 3rd International Symposium on Spatial Data Handling, pp. 225–242. IGU, Colombus (1988)Google Scholar
  3. 3.
    Egenhofer, M.: Reasoning about binary topological relations. In: Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 143–160. Springer, Heidelberg (1991)Google Scholar
  4. 4.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings of the 3rd International Conference on Knowledge Representation and Reasoning, Cambridge, Massachusetts, pp. 165–176 (1992)Google Scholar
  5. 5.
    Clementini, E., Di Felice, P., Van Oosterom, O.: A small set of topological relationships suitable for end-user interaction. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, pp. 277–295. Springer, Heidelberg (1993)Google Scholar
  6. 6.
    Cui, Z., Cohn, A.G., Randell, D.A.: Qualitative and topological relationships in spatial databases. In: Abel, D.J., Ooi, B.C. (eds.) SSD 1993. LNCS, vol. 692, pp. 296–315. Springer, Heidelberg (1993)Google Scholar
  7. 7.
    Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 162–178. Springer, Heidelberg (1992)Google Scholar
  8. 8.
    Frank, A.U.: Qualitative spatial reasoning: cardinal directions as an example. International Journal of Geographical Information Systems 10(3), 269–290 (1996)Google Scholar
  9. 9.
    Sharma, J.: Integrated Spatial Reasoning in GIS: Combining Topology and Direction. PhD Thesis, Department of Spatial Information Science and Engineering, University of Maine, Orono, ME (1996)Google Scholar
  10. 10.
    Papadias, D., Egenhofer, M.J.: Algorithms for hierarchical spatial reasoning. Geoinformatica 1(3), 251–273 (1997)CrossRefGoogle Scholar
  11. 11.
    Goyal, R.K., Egenhofer, M.J.: Consistent queries over cardinal directions across different levels of detail. In: Tjoa, A.M., Wagner, R., Al-Zobaidie, A. (eds.) 11th International Workshop on Database and Expert Systems Applications, Greenwich, UK, pp. 876–880 (2000)Google Scholar
  12. 12.
    Robinson, A.H., Sale, R.D., Morrison, J.L., Muehrcke, P.C.: Elements of Cartography, 5th edn. John Wiley & Sons, New York (1984)Google Scholar
  13. 13.
    Frank, A.U., Volta, G.S., Gahegan, M.: Formalisation of families of categorical coverages. International Journal of Geographical Information Systems, Taylor and Francis (1997)Google Scholar
  14. 14.
    Erwig, M., Schneider, M.: Formalisation of advanced map operations. In: 9th Symp. on spatial data handling, vol. 8a, pp. 3–17 (2000)Google Scholar
  15. 15.
    Gustafson, E.J., Parker, G.R.: Relationships between land-cover proportion and indices of landscape spatial pattern. Landscape Ecology 7, 101–110 (1992)CrossRefGoogle Scholar
  16. 16.
    Schumaker, N.H.: Using landscape indices to predict habitat connectivity. Ecology 77, 1210–1225 (1996)CrossRefGoogle Scholar
  17. 17.
    Haynes, K.E., Fotheringham, A.S.: Gravity and Spatial Interaction Models. Scientific Geography Series. Sage, Newbury Park (1984)Google Scholar
  18. 18.
    Odland, J.: Spatial Autocorrelation. Scientific Geography Series. Sage, Newbury Park (1988)Google Scholar
  19. 19.
    Anselin, L., Getis, A.: Spatial statistical analysis and geographic information systems. The Annals of Regional Science 26, 19–33 (1992)CrossRefGoogle Scholar
  20. 20.
    Getis, A., Ord, J.K.: The analysis of spatial association by use of distance statistics. Geographical Analysis 24(3), 206 (1992)Google Scholar
  21. 21.
    Hillier, B., Hanson, J.: The Social Logic of Space. Cambridge University Press, Cambridge (1984)Google Scholar
  22. 22.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  23. 23.
    Hou, J., Zhang, Y.: A matrix approach for hierarchical web page clustering based on hyperlinks. In: Huang, B., et al. (eds.) Proceedings of the 3rd Int. Conf. on Web Information Systems Engineering (workshops), pp. 207–216. IEEE Press, Singapore (2002)Google Scholar
  24. 24.
    Worboys, M.: Metrics and topologies for geographic space. In: Kraak, M.J., Molenaar, M. (eds.) Advances in GIS Research II, pp. 365–375. Taylor and Francis, Abington (1996)Google Scholar
  25. 25.
    Golledge, R.G., Hubert, L.J.: Some comments on non-Euclidean mental maps. Environment and Planning A 14, 107–118 (1982)CrossRefGoogle Scholar
  26. 26.
    Clementini, E., Di Felice, P., Hernandez, D.: Qualitative representation of positional information. Artificial Intelligence 95(2), 317–356 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  28. 28.
    Tobler, W.R.: A computer model simulating urban growth in the Detroit region. Economic Geography 46, 234–240 (1970)CrossRefGoogle Scholar
  29. 29.
    Duckham, M., Worboys, M.F.: Computational structure in three-valued nearness relations. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 76–91. Springer, Heidelberg (2001)Google Scholar
  30. 30.
    Robinson, V.B.: Interactive machine acquisition of a fuzzy spatial relation. Computers and Geoscience 16(6), 857–872 (1990)CrossRefGoogle Scholar
  31. 31.
    Frank, A.U.: Qualitative spatial reasoning about distances and directions in geographic space. Journal of Visual Languages and Computing 3, 343–371 (1992)CrossRefGoogle Scholar
  32. 32.
    Gahegan, M.: Proximity operators for qualitative spatial reasoning, Spatial Information Theory: A theoretical Basis for GIS. In: Frank, A.U., Kuhn, W. (eds.) COSIT 1995. LNCS, vol. 988, pp. 31–44. Springer, Heidelberg (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Roderic Béra
    • 1
  • Christophe Claramunt
    • 1
  1. 1.Naval Academy Research InstituteLanvéoc-PoulmicBrest NavalFrance

Personalised recommendations