Advertisement

“Simplest” Paths: Automated Route Selection for Navigation

  • Matt Duckham
  • Lars Kulik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2825)

Abstract

Numerous cognitive studies have indicated that the form and complexity of route instructions may be as important to human navigators as the overall length of route. Most automated navigation systems rely on computing the solution to the shortest path problem, and not the problem of finding the “simplest” path. This paper addresses the issue of finding the “simplest” paths through a network, in terms of the instruction complexity. We propose a “simplest” paths algorithm that has quadratic computation time for a planar graph. An empirical study of the algorithm’s performance, based on an established cognitive model of navigation instruction complexity, revealed that the length of a simplest path was on average only 16% longer than the length of the corresponding shortest path. In return for marginally longer routes, the simplest path algorithm seems to offer considerable advantages over shortest paths in terms of their ease of description and execution. The conclusions indicate several areas for future research: in particular cognitive studies are needed to verify these initial computational results. Potentially, the simplest paths algorithm could be used to replace shortest paths algorithms in any automated system for generating human navigation instructions, including in-car navigation systems, Internet driving direction servers, and other location-based services.

Keywords

Navigation wayfinding route selection shortest path instruction complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Streeter, L., Vitello, D., Wonsiewicz, S.: How to tell people where to go: Comparing navigational aids. International Journal of Man Machine Interaction 22, 549–562 (1985)CrossRefGoogle Scholar
  2. 2.
    Streeter, L., Vitello, D.: A profile of driver’s map-reading abilities. Human Factors 28, 223–239 (1986)Google Scholar
  3. 3.
    Golledge, R.: Path selection and route preference in human navigation: A progress report. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 207–222. Springer, Heidelberg (1995)Google Scholar
  4. 4.
    Denis, M., Pazzaglia, F., Cornoldi, C., Bertolo, L.: Spatial discourse and navigation: An analysis of route directions in the city of Venice. Applied Cognitive Psychology 13, 145–174 (1999)CrossRefGoogle Scholar
  5. 5.
    Tversky, B., Lee, P.: How space structures language. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition 1998. LNCS (LNAI), vol. 1404, pp. 157–176. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Tversky, B., Lee, P.: Pictorial and verbal tools for conveying routes. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 51–64. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Richter, K.F., Klippel, A.: You-are-here maps.: Wayfinding support as location based service. In: Moltgen, J., Wytzisk, A., eds.: GI-Technologien für Verkehr und Logistik. IfGI Prints 13, Münster (2002)Google Scholar
  8. 8.
    Burnett, G.: Turn right at the traffic lights: The requirement for landmarks in vehicle navigation systems. Journal of Navigation 53, 499–510 (2000)CrossRefGoogle Scholar
  9. 9.
    May, A., Ross, T., Bayer, S.: Drivers’ informational requirements when navigating in an urban environment. Journal of Navigation 56, 89–100 (2003)CrossRefGoogle Scholar
  10. 10.
    Shapiro, J., Waxman, J., Nir, D.: Level graphs and approximate shortest paths algorithms. Networks 22, 691–717 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Liu, B.: Using knowledge to isolate search in route finding. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI 1995, Montréal, Québec, Canada, vol. 1, pp. 119–125. Morgan Kaufmann, San Francisco (1995)Google Scholar
  12. 12.
    Liu, B.: Intelligent route finding: combining knowledge, cases and an efficient search algorithm. In: 12th European Conference on Artificial Intelligence (ECAI 1996), Budapest, Hungary, pp. 380–384. John Wiley and Sons, Chichester (1996)Google Scholar
  13. 13.
    Frank, A.U.: Pragmatic information content—how to measure the information in a route description. In: Duckham, M., Goodchild, M.F., Worboys, M.F. (eds.) Foundations in Geographic Information Science, pp. 47–68. Taylor & Francis, London (2003)CrossRefGoogle Scholar
  14. 14.
    Goodchild, M.F.: The nature and value of geographic information. In: Duckham, M., Goodchild, M.F., Worboys, M.F. (eds.) Foundations in Geographic Information Science, pp. 19–31. Taylor & Francis, London (2003)CrossRefGoogle Scholar
  15. 15.
    Worboys, M.F.: Communicating geographic information in context. In: Duckham, M., Goodchild, M.F., Worboys, M.F. (eds.) Foundations in Geographic Information Science, pp. 33–45. Taylor & Francis, London (2003)CrossRefGoogle Scholar
  16. 16.
    Mark, D.M.: Automated route selection for navigation. IEEE Aerospace and Electronic Systems Magazine 1, 2–5 (1986)CrossRefGoogle Scholar
  17. 17.
    Mark, D.M.: Finding simple routes: ’ease of description’ as an objective function in automated route selection. In: Proceedings, 2nd Symposium on Artificial Intelligence Applications (IEEE), Miami Beach, pp. 577–581 (1985)Google Scholar
  18. 18.
    Duckham, M., Kulik, L., Worboys, M.F.: Imprecise navigation. GeoInformatica 7, 79–94 (2003)CrossRefGoogle Scholar
  19. 19.
    Pallottino, S., Scutell‘a, M.: Shortest path algorithms in transportation models: Classical and innovative aspects. In: Marcotte, P., Nguyen, S. (eds.) Equilibrium and Advanced Transportation Modelling, pp. 245–281. Kluwer, Amsterdam (1998)Google Scholar
  20. 20.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill, New York (2001)zbMATHGoogle Scholar
  21. 21.
    Luger, G., Stubblefield, W.: Artificial Intelligence: Structures and strategies for complex problem solving, 3rd edn. Addison-Wesley, Reading (1998)zbMATHGoogle Scholar
  22. 22.
    Henzinger, M.R., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algorithms for lanar graphs. Journal of Computer and System Sciences 55, 3–23 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Denis, M.: The description of routes: A cognitive approach to the production of spatial discourse. Cahiers de Psychologie Cognitive 16, 409–458 (1997)Google Scholar
  24. 24.
    Kuipers, B.: Representing Knowledge of Large-Scale Space. PhD thesis, Mathematics Department, Massachusetts Institute of Technology (1977), Technical Report 418, M.I.T. Artificial Intelligence LaboratoryGoogle Scholar
  25. 25.
    Kuipers, B.: Modelling spatial knowledge. Cognitive Science 2, 129–153 (1978)CrossRefGoogle Scholar
  26. 26.
    Chown, E., Kaplan, S., Kortenkamp, D.: Prototypes, location and associative networks (plan): Towards a unified theory of cognitive mapping. Journal of Cognitive Science 19 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Matt Duckham
    • 1
  • Lars Kulik
    • 1
  1. 1.National Center for Geographic Information and AnalysisUniversity of MaineOronoUSA

Personalised recommendations