Skip to main content

Graph Kernels and Gaussian Processes for Relational Reinforcement Learning

  • Conference paper
Inductive Logic Programming (ILP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2835))

Included in the following conference series:

Abstract

Relational reinforcement learning is a Q-learning technique for relational state-action spaces. It aims to enable agents to learn how to act in an environment that has no natural representation as a tuple of constants. In this case, the learning algorithm used to approximate the mapping between state-action pairs and their so called Q(uality)-value has to be not only very reliable, but it also has to be able to handle the relational representation of state-action pairs.

In this paper we investigate the use of Gaussian processes to approximate the quality of state-action pairs. In order to employ Gaussian processes in a relational setting we use graph kernels as the covariance function between state-action pairs. Experiments conducted in the blocks world show that Gaussian processes with graph kernels can compete with, and often improve on, regression trees and instance based regression as a generalisation algorithm for relational reinforcement learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68 (1950)

    Google Scholar 

  2. Barnett, S.: Matrix Methods for Engineers and Scientists. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  3. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, MIT Press, Cambridge (2002)

    Google Scholar 

  4. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  5. Diestel, R.: Graph Theory. Springer, Heidelberg (2000)

    Book  Google Scholar 

  6. Driessens, K., Džeroski, S.: Integrating experimentation and guidance in relational reinforcement learning. In: Sammut, C., Hoffmann, A. (eds.) Proceedings of the Nineteenth International Conference on Machine Learning, pp. 115–122. Morgan Kaufmann Publishers, Inc., San Francisco (2002)

    Google Scholar 

  7. Driessens, K., Ramon, J.: Relational instance based regression for relational reinforcement learning. In: Proceedings of the 20th International Conference on Machine Learning (2003) (to be published)

    Google Scholar 

  8. Driessens, K., Ramon, J., Blockeel, H.: Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 97–108. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Džeroski, S., De Raedt, L., Blockeel, H.: Relational reinforcement learning. In: Proceedings of the 15th International Conference on Machine Learning, pp. 136–143. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  10. Forbes, J., Andre, D.: Representations for learning control policies. In: de Jong, E., Oates, T. (eds.) Proceedings of the ICML 2002 Workshop on Development of Representations, pp. 7–14. The University of New South Wales, Sydney (2002)

    Google Scholar 

  11. Gärtner, T.: Exponential and geometric kernels for graphs. In: NIPS Workshop on Unreal Data: Principles of Modeling Nonvectorial Data (2002)

    Google Scholar 

  12. Gärtner, T.: Kernel-based multi-relational data mining. SIGKDD Explorations (2003)

    Google Scholar 

  13. Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: Proceedings of the 16th Annual Conference on Computational Learning Theory and the 7th Kernel Workshop (2003)

    Google Scholar 

  14. Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels for structured data. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 66–83. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Haussler, D.: Convolution kernels on discrete structures. Technical report, Department of Computer Science, University of California at Santa Cruz (1999)

    Google Scholar 

  16. Imrich, W., KlavĹľar, S.: Product Graphs: Structure and Recognition. John Wiley, Chichester (2000)

    MATH  Google Scholar 

  17. Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  18. Kashima, H., Inokuchi, A.: Kernels for graph classification. In: ICDM Workshop on Active Mining (2002)

    Google Scholar 

  19. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  20. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. Journal of Machine Learning Research 2 (2002)

    Google Scholar 

  21. MacKay, D.J.C.: Introduction to Gaussian processes (1997), available at http://wol.ra.phy.cam.ac.uk/mackay

  22. Ormoneit, D., Sen, S.: Kernel-based reinforcement learning. Machine Learning 49, 161–178 (2002)

    Article  MATH  Google Scholar 

  23. Schaal, S., Atkeson, C.G., Vijayakumar, S.: Real-time robot learning with locally weighted statistical learning. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 288–293. IEEE Press, Piscataway (2000)

    Google Scholar 

  24. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  25. Smart, W.D., Kaelbling, L.P.: Practical reinforcement learning in continuous spaces. In: Proceedings of the 17th International Conference on Machine Learning, pp. 903–910. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  26. Sutton, R., Barto, A.: Reinforcement Learning: an introduction. The MIT Press, Cambridge (1998)

    Google Scholar 

  27. Watkins, C.: Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge (1989)

    Google Scholar 

  28. Zien, A., Ratsch, G., Mika, S., Schölkopf, B., Lengauer, T., Muller, K.-R.: Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16(9), 799–807 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gärtner, T., Driessens, K., Ramon, J. (2003). Graph Kernels and Gaussian Processes for Relational Reinforcement Learning. In: Horváth, T., Yamamoto, A. (eds) Inductive Logic Programming. ILP 2003. Lecture Notes in Computer Science(), vol 2835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39917-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39917-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20144-1

  • Online ISBN: 978-3-540-39917-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics