6. Symmetry Properties of Electronic and Photonic Band Structures

  • W. Hergert
  • M. Däne
  • D. Ködderitzsch
Part I Basic Description of Electrons and Photons in Crystals
Part of the Lecture Notes in Physics book series (LNP, volume 642)


Group theoretical investigations have a huge potential to simplify calculations in solid state theory. We will discuss the application of group theory to electronic and photonic band structures. The symmetry properties of the Schrödinger equation and Maxwell’s equations as well will be investigated. We have developed methods to simplify group theoretical investigations based on the computer algebra system Mathematica.


Photonic Crystal Irreducible Representation Point Group Symmetry Property Computer Algebra System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. J.F. Cornwell, Group Theory and Electronic Energy Bands in Solids, Selected Topics in Solid State Physics Vol. 10 (North Holland, Amsterdam, 1969).Google Scholar
  2. 2. J.F. Cornwell, Group Theory in Physics, Techniques in Physics Vol.7 (Academic Press, London 1984)Google Scholar
  3. 3. W. Ludwig and C. Falter, Symmetry in Physics, Springer Series in Solid State Sciences 64 (Springer, Berlin, 1988).Google Scholar
  4. 4. B.S. Tsukerblat, Group Theory in Chemistry and Spectroscopy - A simple guide to advanced usage (Academic Press, London, 1994).Google Scholar
  5. 5. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals (Princeton University Press, Princeton 1995).Google Scholar
  6. 6. K. Sakoda, Phys. Rev. B 52, 7982 (1995).Google Scholar
  7. 7. K. Sakoda, Phys. Rev. B 55, 15345 (1997).Google Scholar
  8. 8. T. Ochiai and K. Sakoda, Phys. Rev. B 64, 045108 (2001).Google Scholar
  9. 9. K. Sakoda, Optical Properties of Photonic Crystals, Springer Series in Optical Sciences Vol.80 (Springer, Berlin, 2001).Google Scholar
  10. 10. K. Ohtaka and Y. Tanabe, J. Phys. Soc. Japan 65, 2670 (1996).Google Scholar
  11. 11. Computeralgebra in Deutschland, Bestandsaufnahme, Möglichkeiten, Perspektiven, Fachgruppe Computeralgebra der GI, DMV und GAMM, Passau und Heidelberg 1993Google Scholar
  12. 12. K. Shirai, Theories of point group in solid state physics, package available from the Mathematica resource library Scholar
  13. 13. The package can be found at The software is still under development. Critical comments and hints are welcome.Google Scholar
  14. 14. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, (John Wiley & Sons, New York ).Google Scholar
  15. 15. G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists (Academic Press, San Diego 1995)Google Scholar
  16. 16. J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York 1941).Google Scholar
  17. 17. R.F. Egorov, B.I. Reser, V.P. Shirkovskii, phys. stat. sol. 26, 391 (1968).Google Scholar
  18. 18. E. Lidorikis, M.M. Sigalas, E.N. Economou, and C.M. Soukoulis, Phys. Rev. Lett. 81, 1405 (1998).Google Scholar
  19. 19. J.P. Albert, C. Jouanin, D. Cassagne, and D. Monge, Opt. and Quantum Electronics 34, 251 (2002).Google Scholar
  20. 20. M. Le Vassor d’Yerville, D. Monge, D. Cassange, and J.P. Albert, Opt. and Quantum Electronics 34, 445 (2002).Google Scholar
  21. 21. J.P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, Phys. Rev. B 61, 4381 (2000).Google Scholar
  22. 22. M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. B 61, R11855 (2000).Google Scholar
  23. 23. M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).Google Scholar
  24. 24. M. Bayindir and E. Ozbay, Phys. Rev. B 62, R2247 (2000).Google Scholar
  25. 25. S. Wolfram, Das Mathematica-Buch, Die offizielle Dokumentation (Addison-Wesley-Longman, Bonn 1997).Google Scholar
  26. 26. S.L. Altmann and A.P. Cracknell, Rev. Mod. Phys. 37, 19 (1965).Google Scholar
  27. 27. S.L. Altmann and C.J. Bradley, Rev. Mod. Phys. 37, 33 (1965).Google Scholar
  28. 28. S.G.  Johnson and J.D.  Joannopoulos, Optics Express 8, 173 (2001).Google Scholar
  29. 29. A.W. Luehrmann, Adv. in Physics, 17, 3 (1968).Google Scholar
  30. 30. W.M. Robertson, G. Arjavalingam, R.D. Meade, K.D. Brommer, A.M. Rappe, and J.D. Joannopoulos, Phys. Rev. Lett. 68, 2023 (1992).Google Scholar
  31. 31. W.M. Robertson, G. Arjavalingam, R.D. Meade, K.D. Brommer, A.M. Rappe, and J.D. Joannopoulos, J. Opt. Soc. Am B 10, 322 (1993).Google Scholar
  32. 32. F. López-Tejeira, T. Ochiai, K. Sakoda, and J. Sánchez-Dehesa, Phys. Rev. B 65, 195110 (2002).Google Scholar

Authors and Affiliations

  • W. Hergert
    • 1
  • M. Däne
    • 1
  • D. Ködderitzsch
    • 1
  1. 1.Martin-Luther-University Halle-Wittenberg, Department of Physics, Von-Seckendorff-Platz 1, 06120 HalleGermany

Personalised recommendations