Skip to main content

3. Methods for Band Structure Calculations in Solids

  • Part I Basic Description of Electrons and Photons in Crystals
  • Chapter
  • First Online:
Computational Materials Science

Part of the book series: Lecture Notes in Physics ((LNP,volume 642))

Abstract

The calculation of the ground-state and excited-state properties of materials is one of the main goals of condensed matter physics. While the most successful first-principles method, the density-functional theory (DFT), provides, in principle, the exact ground-state properties, the many-body method is the most suitable approach for studying excited-state properties of extended systems. Here we discuss general aspects of the Green’s function and different approximations for the self-energy to solve the Dyson equation. Further we present some tools for solving the Dyson equation with several approximations for the self-energy: a highly precise combined basis method providing the band structure in the Kohn-Sham approximation, and some implementations for the random-phase approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. O.K. Andersen. Linear methods in band theory. Phys. Rev. B, 12:3060, 1975.

    Google Scholar 

  • 2. O.K. Andersen and O. Jepsen. Explicit, first-principles tight-binding theory. Phys. Rev. Lett., 53:2571, 1984.

    Google Scholar 

  • 3. V.N. Antonov, A.Y. Perlov, A.P. Shpak, and A.N. Yaresko. Calculation of the magneto-optical properties of ferromagnetic metals using the spin-polarised relativistic lmto method. JMMM, 146:205, 1995.

    Google Scholar 

  • 4. F. Aryasetiawan. Self-energy of ferromagnetic nickel in the gw approximation. Phys. Rev. B, 46:13051, 1992.

    Google Scholar 

  • 5. F. Aryasetiawan and O. Gunnarson. The GW method. Rep. Prog. Phys., 61:237, 1998.

    Google Scholar 

  • 6. F. Aryasetiawan and O. Gunnarsson. Product-basis method for calculating dielectric matrices. Phys. Rev. B, 49:16214, 1994.

    Google Scholar 

  • 7. W.G. Aulbur, L. Jönsson, and J.W. Wilkins. Quasiparticle calculations in solids. In H. Ehrenreich and F. Spaepen, editors, Solid State Physics, volume 54. Academic, San Diego, 2000.

    Google Scholar 

  • 8. G. Baym. Self-consistent approximations in many-body systems. Phys. Rev., 127:1391, 1962.

    Google Scholar 

  • 9. G. Baym and L. Kadanoff. Conservation laws and correlation functions. Phys. Rev., 124:287, 1961.

    Google Scholar 

  • 10. P. Blaha, K. Schwarz, P. Sorantin, and S. Trickey. Full-Potential, Linearized Augmented Plane Wave Programs for Crystalline Systems. Comp. Phys. Commun., 59:399, 1990.

    Google Scholar 

  • 11. F. Bloch. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys., 52:555–600, 1928.

    Google Scholar 

  • 12. P.E. Blöchel. Projector augmented-wave method. Phys. Rev. B, 50:17953, 1994.

    Google Scholar 

  • 13. D.J. Ceperley and L. Alder. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45:566, 1980.

    Google Scholar 

  • 14. R.M. Dreizler and E.K.U. Gross. Density Functional Theory. Springer, Berlin, 1990.

    Google Scholar 

  • 15. H. Dreyssé, editor. Electronic Structure and Physical Properties of Solids. The Uses of the LMTO Method. Springer, Berlin, 2000.

    Google Scholar 

  • 16. H. Ebert and G. Schütz, editors. Magnetic Dichroism and Spin Polarization in Angle-Resolved Photoemission. Number 466 in Lecture Notes in Physics. Springer, Berlin, 1996.

    Google Scholar 

  • 17. A. Ernst. full-potential-Verfahren mit einer kombinierten Basis für die elektronische Struktur. PhD thesis, Tu Dresden, 1997.

    Google Scholar 

  • 18. A. Ernst, W.M. Temmerman, Z. Szotek, M. Woods, and P.J. Durham. Real-space angle-resolved photoemission. Phil. Mag. B, 78:503, 1998.

    Google Scholar 

  • 19. Eschrig. The Fundamentals of Density Functional Theory. Teubner, Stuttgart, 1996.

    Google Scholar 

  • 20. H. Eschrig. Mixed basis method. In E.K.U. Gross and R.M. Dreizler, editors, Density Funtional Theory, page 549. Plenum Press, New York, 19.

    Google Scholar 

  • 21. H. Eschrig. Optimized LCAO Method and the Electronic Structure of extended systems. Springer-Verlag Berlin, 1989.

    Google Scholar 

  • 22. A. Fetter and J. Walecka. Quantum Theory of Many-Particle Systems. McGraw-Hill, New York, 1971.

    Google Scholar 

  • 23. A. Gonis. Green Functions for Ordered and Disordered Systems, volume 4 of Studies in Mathematical Physics. North-Holland, Amsterdam, 1992.

    Google Scholar 

  • 24. E. Gross and E. Runge. Vielteilchentheorie. Teubner, Stuttgart, 1986.

    Google Scholar 

  • 25. N. Hamada, M. Hwang, and A.J. Freeman. Self-energy correction for the energy bands of silicon by the full-potential linearized augmented-plane-wave method: Effect of the valence-band polarization. Phys. Rev. B, 41:3620, 1990.

    Google Scholar 

  • 26. D.R. Hamann, M. Sclüter, and C. Chiang. Norm-conserving pseudopotentials. Phys. Rev. Lett, 43:1494, 1979.

    Google Scholar 

  • 27. L. Hedin. Ark. Fys., 30:231, 1965.

    Google Scholar 

  • 28. L. Hedin. New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys. Rev., 139:A796, 1965.

    Google Scholar 

  • 29. L. Hedin and S. Lundqvist. Effects of electron-electron and electron-phonon interactions on the one-electron states of solids. In F. Seitz and D. Turnbull, editors, Solid State Physics, volume 23. New York: Academic, 1969.

    Google Scholar 

  • 30. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864, 1964.

    Google Scholar 

  • 31. R.O. Jones and O. Gunnarson. The density functional formalism, its applications and prospects. Rev. Mod. Phys., 61:689, 1989.

    Google Scholar 

  • 32. K. Koepernik and H. Eschrig. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B, 59:1743, 1999.

    Google Scholar 

  • 33. W. Kohn and N. Rostoker. Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium. Phys. Rev., 94:1111, 1954.

    Google Scholar 

  • 34. W. Kohn and L.J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev, 140:A1133, 1965.

    Google Scholar 

  • 35. J. Korringa. Physica, 13:392, 1947.

    Google Scholar 

  • 36. T. Kotani and M. van Schilfgaarde. All-electron gw approximation with the mixed basis expansion based on the full-potential lmto method. Solid State Communications, 121:461, 2002.

    Google Scholar 

  • 37. G.S. Krinchik and V.A. Artem’ev. Magneto-optical properties of ni, co, and fe in the ultraviolet, visible and infrared parts of the spectrum. Soviet Physics JETP, 26:1080–1968, 1968.

    Google Scholar 

  • 38. M. Lüders, A. Ernst, W.M. Temmerman, Z. Szotek, and P.J. Durham. Ab initio angle-resolved photoemission in multiple-scattering formulation. J. Phys.: Condens. Matt., 13:8587, 2001.

    Google Scholar 

  • 39. J.M. Luttinger. Analytic properties of single-particle propagators for many-fermion systems. Phys.Rev, 121(4):942, 1961.

    Google Scholar 

  • 40. J.M. Luttinger and J.C. Ward. Ground-state energy of a many-fermion system. ii. Phys. Rev., 118:1417, 1960.

    Google Scholar 

  • 41. P.K. M. Rohlfing and J. Pollmann. Quasiparticle band-structure calculations for c, si, ge, gaas, and sic using gaussian-orbital basis sets. Phys. Rev. B, 48:17791, 1993.

    Google Scholar 

  • 42. R. Mattuck. A Guide to Feynman Diagrams in the Many-Body Problem. McGraw-Hill, New York, 1976.

    Google Scholar 

  • 43. M. Milun, P. Pervan, B. Gumhalter, and D.P. Woodruff. Photoemission intensity oscillations from quantum-well states in the Ag/V(100) overlayer system. Phys. Rev. B, 59:5170, 1999.

    Google Scholar 

  • 44. G. Onida, L. Reining, and A. Rubio. Electronic excitations: density-functional versus many-body green’s-function approaches. Reviews of Modern Physics, 72(2):601, 2002.

    Google Scholar 

  • 45. R.G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York, 1989.

    Google Scholar 

  • 46. J. Perdew. What do kohn-sham orbital energies mean? how do atoms dissociate? In R.M. Dreizler and da Providencia J., editors, Density Functional Methods in Physics, volume Physics 123 of NATO ASI Series B, page 265. Plenum, Press, New York and London, 1985.

    Google Scholar 

  • 47. J.P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 45:13 244, 1992.

    Google Scholar 

  • 48. J.P. Perdew and A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23:5048, 1981.

    Google Scholar 

  • 49. M. Petersilka, U.J. Gossmann, and E.K.U. Gross. Excitation energies from time-dependent density-functional theory. Phys. Rev. Lett., 76:1212, 1996.

    Google Scholar 

  • 50. H.N. Rojas, R.W. Godby, and R.J. Needs. Space-time method for ab initio calculations of self-energies and dielectric response functions of solids. Phys. Rev. Lett., 74:1827, 1995.

    Google Scholar 

  • 51. L.J. Sham and W. Kohn. One-particle properties of an inhomogeneous interacting electron gas. Phys. Rev., 145:561, 1966.

    Google Scholar 

  • 52. J.C. Slater. Damped Electron Waves in Crystals. Phys. Rev., 51:840–846, 1937.

    Google Scholar 

  • 53. A. Svane. Electronic structure of cerium in the self-interaction corrected local spin density approximatio. Phys. Rev. Lett., 72:1248, 1996.

    Google Scholar 

  • 54. Z. Szotek, W.M. Temmerman, and H. Winter. Self-interaction corrected, local spin density description of the gamma –> alpha transition in ce. Phys. Rev. Lett., 72:1244, 1994.

    Google Scholar 

  • 55. M. Usuda, N. Hamada, T. Kotani, and M. van Schilfgaarde. All-electron gw calculation based on the lapw method: Application to wurtzite zno. Phys. Rev. B, 66:125101, 2002.

    Google Scholar 

  • 56. D. Vanderblit. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41:1990, 1990.

    Google Scholar 

  • 57. U. von Barth and L. Hedin. A local exchange-correlation potential for the spin polarised case. J. Phys. C: Sol. State Phys., 5:1629, 1972.

    Google Scholar 

  • 58. S.H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys., 58:1200, 1980.

    Google Scholar 

  • 59. P. Weinberger. Electron Scattering Theory of Ordered and Disordered Matter. Clarendon Press, Oxford, 1990.

    Google Scholar 

  • 60. A.R. Williams, J. Kübler, and C.D. Gelatt. Cohesive properties of metallic compounds: Augmented-spherical-wave calculations. Phys. Rev. B, 19:6094, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Hergert M. Däne A. Ernst

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Ernst, A., Lüders, M. 3. Methods for Band Structure Calculations in Solids. In: Hergert, W., Däne, M., Ernst, A. (eds) Computational Materials Science. Lecture Notes in Physics, vol 642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39915-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39915-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21051-1

  • Online ISBN: 978-3-540-39915-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics