14. Multi-Grid Methods – An Introduction

  • G. Wittum
Part III Modern Methods of Scienti.c Computing
Part of the Lecture Notes in Physics book series (LNP, volume 642)


The lecture will give an introductory overview on multi-grid methods. Multi-grid methods are fast solvers for algebraic equations derived from the discretiziation of pde. They have optimal complexity, are very flexible and can used for a wide variety of problems. The bad news is, however, that they often must be adapted to the problem.

After an introduction and the description of the main ideas will present guidelines for the construction of multi-grid methods and give some theoretical backup of those. Further we address the main multi-grid difficulties and workaround for a number of application problems.


Convergence Rate Approximation Property Multigrid Method Sparsity Pattern Multigrid Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. Varga, R.S.: Matrix iterative analysis. Prentice Hall, 1962Google Scholar
  2. 2. Gauß, C. F.: letter to Gerling from 25. of december 1823Google Scholar
  3. 3. Jacobi, C.G.J.: über eine neue Auflösungsart der bei der Methods der kleinsten Quadrate vorkommenden linearen Gleichungen. Astronom. Nachrichten 32 (1845), 297-306.Google Scholar
  4. 4. Young, D.: Iterative methods for solving patrial difference equations of elliptic type. Thesis Harvard University (1950)Google Scholar
  5. 5. Stiefel, E.: über einige Methoden der Relaxationsrechnung. Z Angew. Math. Phys. 3 (1952) 1-33.Google Scholar
  6. 6. Fedorenko, R.P.: Ein Relaxationsverfahren zur Lösung elliptischer Differentialgleichungen. (russ.) UdSSR Comput Math Phys 1,5 (1961), 1092-1096Google Scholar
  7. 7. Brandt, A.: Multi-level adaptive technique for fast numerical solution to boundary value problems. Proc. 3rd Internat. Conf. on Numerical Methods in Fluid Mechanics, Paris, 1972. Lecture Notes in Physics 18, Springer, Heidelberg, (1973), 83-89.Google Scholar
  8. 8. Hackbusch, W.: Ein iteratives Verfahren zur schnellen Auflösung elliptischer Randwertprobleme. Report 76-12, Universität Köln (1976).Google Scholar
  9. 9. Hackbusch, W.: Survey of convergence proofs for multi-grid iterations. In: Frehse-Pallaschke-Trottenberg: Special topics of applied mathematics, Proceedings, Bonn, Oct. 1979. North-Holland, Amsterdam 1980, 151-164Google Scholar
  10. 10. Hackbusch, W.: Multi-grid methods and applications. Springer, Berlin, Heidelberg (1985).Google Scholar
  11. 11. Xu, J: Iterative methods by space-decomposition and subspace correction. SIAM Review, 34(4), 581-613, 1992.Google Scholar
  12. 12. Braess, D.: The convergence rate of a multigrid method with Gau -Seidel relaxation for the Poisson equation. In: Hackbusch-Trottenberg: Multigrid Methods. Proceedings, K ln-Porz,1981.Lecture Notes in Mathematics, Bd. 960, Springer, Heidelberg,1982Google Scholar
  13. 13. Bank, R.E., Dupont, T.: An optimal order process for solving elliptic finite element equations. Math. Comp. 36, 35-51, 1981Google Scholar
  14. 14. Braess, D., Hackbusch, W.: A new convergence proof for the multigrid method including the V-cycle. SIAM J Numer. Anal. 20 (1983) 967-975Google Scholar
  15. 15. Wittum, G.: On the robustness of ILU-smoothing. SIAM J. Sci. Stat. Comput., 10, 699-717, (1989)Google Scholar
  16. 16. Wittum, G.: Linear iterations as smoothers in multi-grid methods. Impact of Computing in Science and Engineering, 1, 180-215 (1989).Google Scholar
  17. 17. Reusken, A.: The smoothing property for regular splitting. In: W. Hackbusch and G. Wittum, editors, Incomplete Decompositions (ILU) - Algorithms, Theory, and Applications, p. 130-138, Vieweg, Braunschweig, 1992.Google Scholar
  18. 18. Wittum, G.: Spektralverschobene Iterationen. ICA-Bericht N95/4, Universität Stuttgart, Mai 1995.Google Scholar
  19. 19. Hackbusch, W.: A note on Reusken’s Lemma. To appear in Computing, 1994.Google Scholar
  20. 20. Ecker, A., Zulehner, W.: On the smoothing property for the non-symmetric case. Institutsbericht Nr. 489, Institut f r Mathematik, Johannes Kepler Universität Linz, April 1995.Google Scholar
  21. 21. Xu, J: Iterative methods by space-decomposition and subspace correction. SIAM Review, 34(4), 581-613, 1992.Google Scholar
  22. 22. Bramble, J.H., Pasciak, J.E., Xu, J.: Parallel multilevel preconditioners. Math. Comput., 55, 1-22 (1990).Google Scholar
  23. 23. Yserentant, H.: Old and new convergence proofs for multigrid methods. Acta Numerica, 1993.Google Scholar
  24. 24. Stüben, K., Trottenberg, U.: Multigrid methods: fundamental algorithms, model problem analysis and applications. In: Hackbusch,W., Trottenberg,U.(eds.): Multi-grid methods. Proceedings, Lecture Notes in Math. 960, Springer, Berlin (1982).Google Scholar
  25. 25. Bey, J., Wittum, G.: Downwind Numbering: A Robust Multigrid Method for the Convection-Diffusion Equation on Locally Refined Grids. In: Hackbusch, W., Wittum, G. (eds.): Adaptive Methods - Algorithms, theory and Applications, NNFM 46, Vieweg, Braunschweig, 1994Google Scholar
  26. 26. Reichert, H., Wittum, G.: Robust multigrid methods for the incompressible Navier-Stokes equations. ICA-Bericht N94/2, Universität Stuttgart, November 1994.Google Scholar
  27. 27. Wittum, G.: Multi-grid methods for Stokes and Navier-Stokes equations. Transforming smoothers - algorithms and numerical results. Numerische Mathematik, 54 , 543-563(1989)Google Scholar
  28. 28. Patankar, S.V., Spalding, D.B.: A calculation procedure for heat and mass transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer, 15 (1972), 1787-1806Google Scholar
  29. 29. Wittum, G.: On the convergence of multi-grid methods with transforming smoothers. Theory with applications to the Navier-Stokes equations. Numer. Math. 57:15-38 (1990)Google Scholar
  30. 30. Yserentant, H.: Über die Aufspaltung von Finite-Element-R umen in Teilräume verschiedener Verfeinerungsstufen. Habilitationsschrift, RWTH Aachen, 1984Google Scholar
  31. 31. Bank, R.E., Dupont, T., Yserentant, H.: The hierarchical basis multigrid method. Numer. Math. 52, 427-458 (1988)Google Scholar
  32. 32. Bramble, J.H., Pasciak, J.E., Xu, J.: Parallel multilevel preconditioners. Math. Comput., 55, 1-22 (1990).Google Scholar
  33. 33. Bramble, J.H., Pasciak, J.E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comp. 57, 23-45 (1991)Google Scholar
  34. 34. Rivara, M. C.: Design and data structure of a fully adaptive multigrid finite element software. ACM Trans. on Math. Software, 10, 242-264 (1984)Google Scholar
  35. 35. Bastian, P., Wittum, G.: On robust and adaptive multigrid methods. In: Hemker, P., Wesseling, P. (eds.): Multigrid methods, Birkh user, Basel, 1994Google Scholar
  36. 36. Greenbaum, A.: A multigrid method for multiprocessors. Appl. Math. Comp. 19, 75-88 (1986)CrossRefGoogle Scholar

Authors and Affiliations

  • G. Wittum
    • 1
  1. 1.Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Im Neuenheimer Feld 368, 69120 HeidelbergGermany

Personalised recommendations