12. Simulation of the Material Behavior from the Engineering Point of View – Classical Approaches and New Trends

  • H. Altenbach
Part II Simulation from Nanoscopic Systems to Macroscopic Materials
Part of the Lecture Notes in Physics book series (LNP, volume 642)


The analysis of any engineering structure is based on three steps - the choice of a material model, of a structural model and of an analytical or numerical method. All three items are interlinked, and the improvement, for example, of the structural model demands the improvement of the material behavior model and vice versa. In this contribution is reported on the engineering approaches to the material modelling. The models are mostly phenomenologically that means the real structure of the material is ignored. On the other hand, they are much simpler in comparison with micro-mechanically or physically based equations.

In the first part some general remarks on the principles of material modelling will be given. Three approaches to formulate material equations are presented. The main attention is paid to the inductive approach. In the final part some examples showing the application of the engineering models of material behavior to the analysis of thin-walled structures (beams, plates, shells) are given.


Material Behavior Creep Strain Creep Behavior Steady State Creep Tertiary Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. H. Altenbach. Modelling of viscoelastic behaviour of plates. In M. Życzkowski, editor, Creep in Structures, pages 531 – 537. Springer, Berlin, Heidelberg, 1991.Google Scholar
  2. 2. H. Altenbach. Creep-damage behaviour in plates and shells. Mechanics of Time-Dependent Materials, 3:103–123, 1999.Google Scholar
  3. 3. H. Altenbach. An alternative determination of transverse shear stiffnesses for sandwich and laminated plates. Int. J. Solids & Structures, 37(25):3503 – 3520, 2000.Google Scholar
  4. 4. H. Altenbach. On the determination of transverse shear stiffnesses of orthotropic plates. ZAMP, 51:629 – 649, 2000.Google Scholar
  5. 5. H. Altenbach. Consideration of stress state influences in the material modelling of creep and damage. In S. Murakami and N. Ohno, editors, IUTAM Symposium on Creep in Structures, pages 141 – 150. Kluwer, Dordrecht, 2001.Google Scholar
  6. 6. H. Altenbach, J. Altenbach, and R. Rikards. Einführung in die Mechanik der Laminat- und Sandwichtragwerke. Deutscher Verlag für Grundstoffindustrie, Stuttgart, 1996.Google Scholar
  7. 7. H. Altenbach, J. Altenbach, and A. Zolochevsky. Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, Stuttgart, 1995.Google Scholar
  8. 8. H. Altenbach, G. Kolarow, O. Morachkovsky, and K. Naumenko. On the accuracy of creep-damage predictions in thinwalled structures using the finite element method. Comp. Mech., 25:87–98, 2000.Google Scholar
  9. 9. H. Altenbach, V. Kushnevsky, and K. Naumenko. On the use of solid- and shell-type finite elements in creep-damage predictions of thinwalled structures. Arch. Appl. Mech., 71:164 – 181, 2001.Google Scholar
  10. 10. H. Altenbach and K. Naumenko. Shear correction factors in creep-damage analysis of beams, plates and shells. JSME International Journal, Series A, 45(1):77 – 83, 2002.Google Scholar
  11. 11. H. Altenbach, P. Schieße, and A.A. Zolochevsky. Zum Kriechen isotroper Werkstoffe mit komplizierten Eigenschaften. Rheol. Acta, 30:388 – 399, 1991.Google Scholar
  12. 12. H. Altenbach and J. Skrzypek, editors. Creep and Damage in Materials and Structures. CISM Courses and Lectures Notes No. 399. Springer, Wien, New York, 1999.Google Scholar
  13. 13. H. Altenbach and A.A. Zolochevsky. Eine energetische Variante der Theorie des Kriechens und der Langzeitfestigkeit für isotrope Werkstoffe mit komplizierten Eigenschaften. ZAMM, 74(3):189 – 199, 1994.Google Scholar
  14. 14. J. Altenbach and H. Altenbach. Einführung in die Kontinuumsmechanik. Teubner Studienbücher Mechanik. Teubner, Stuttgart, 1994.Google Scholar
  15. 15. J. Altenbach, H. Altenbach, and K. Naumenko. Lebensdauerabschätzung dünnwandiger flächentragwerke auf der grundlage phänomenologischer materialmodelle für kriechen und schädigung. Technische Mechanik, 17(4):353–364, 1997.Google Scholar
  16. 16. Y. Başar and W.B. Krätzig. Mechanik der Flächentragwerke. Vieweg, Braunschweig et al., 1985.Google Scholar
  17. 17. A. Bertram. What is the general constitutive equation? In A. Cassius et al., editor, Beiträge zur Mechanik: Festschrift zum 65. Geburtstag Rudolf Trostel, pages 28 – 37. TU Berlin, Berlin, 1993.Google Scholar
  18. 18. J. Betten. Anwendungen von Tensorfunktionen in der Kontinuumsmechanik anisotroper Materialien. ZAMM, 78(8):507 – 521, 1998.Google Scholar
  19. 19. J.T. Boyle and J. Spence. Stress Analysis for Creep. Butterworth, London, 1983.Google Scholar
  20. 20. B.J. Cane. Creep fracture of dispersion strengthened low alloy ferritic steels. Acta Metall., 29:1581–1591, 1981.Google Scholar
  21. 21. W.F. Chen and H. Zhang. Structural Plasticity. Springer, Berlin et al., 1991.Google Scholar
  22. 22. R.M. Christensen. Theory of Viscoelastiocity. Academic Press, New York et al., 1971.Google Scholar
  23. 23. T.J. Chung. Continuum Mechanics. Prentice-Hall, London et al., 1988.Google Scholar
  24. 24. B.D. Coleman and M.E. Gurtin. Thermodynamics with internal state variables. J. of Physical Chemics, 47(2):597 – 613, 1967.Google Scholar
  25. 25. B.F. Dyson and S. Osgerby. Modelling and analysis of creep deformation and fracture in a 1Cr0.5Mb ferritic steel. Technical Report 116, DMM(A), 1993.Google Scholar
  26. 26. A.C. Eringen and G.A. Maugin. Electrodynamics of Continua I - Foundations and Solid Media. Springer, New York et al., 1989.Google Scholar
  27. 27. P. Gummert. General constitutive equations for simple and non–simple materials. In H. Altenbach and J. Skrzypek, editors, Creep and Damage in Materials and Structures, CISM Courses and Lectures Notes No. 399, pages 1 – 43. Springer, Wien, New York, 1999.Google Scholar
  28. 28. P. Haupt. Konzepte der Materialtheorie. Techn. Mechanik, 16(1):13 – 22, 1996.Google Scholar
  29. 29. P. Haupt. Continuum Mechanics and Theory of Materials. Springer, Berlin, 2000.Google Scholar
  30. 30. D.R. Hayhurst. Creep rupture under multiaxial states of stress. J. Mech. Phys. Solids, 20:381 – 390, 1972.Google Scholar
  31. 31. D.R. Hayhurst. Materials data bases and mechanisms–based constitutive equations for use in design. In H. Altenbach and J. Skrzypek, editors, Creep and Damage in Materials and Structures, CISM Courses and Lectures Notes No. 399, pages 285 – 348. Springer, Wien, New York, 1999.Google Scholar
  32. 32. J.R. Hutchinson. Shear coefficients for Timoshenko beam theory. Trans. ASME. J. Appl. Mech., 68(1):87–92, 2001.Google Scholar
  33. 33. L.M. Kachanov. O vremeni razrusheniya v usloviyakh polzuchesti (Time of the rupture process under creep conditions, in Russ.). Izv. AN SSSR. Otd. Tekh. Nauk, (8):26 – 31, 1958.Google Scholar
  34. 34. L.M. Kachanov. Introduction to Continuum Damage Mechanics. Mechanics of Elastic Stability. Martinus Nijhoff, Dordrecht et al., 1986.Google Scholar
  35. 35. Z.L. Kowalewski, D.R. Hayhurst, and B.F. Dyson. Mechanisms-based creep constitutive equations for an aluminium alloy. J. Strain Anal., 29(4):309 – 316, 1994.Google Scholar
  36. 36. D. Krajcinovic and J. Lemaitre, editors. Continuum Damage Mechanics - Theory and Application. CISM Courses and Lectures Notes No. 295. Springer, Wien, New York, 1987.Google Scholar
  37. 37. A. Krawietz. Materialtheorie. Mathematische Beschreibung des phänomenologischen thermomechanischen Verhalten. Springer, Berlin et al., 1986.Google Scholar
  38. 38. F.A. Leckie and D.R. Hayhurst. Constitutive equations for creep rupture. Acta Metallurgica, 25:1059 – 1070, 1977.Google Scholar
  39. 39. J. Lemaitre. A Course on Damage Mechanics. Springer, Berlin et al., 1996.Google Scholar
  40. 40. J. Lemaitre and J.-L. Chaboche. Mechanics of Solid Materials. Cambridge University Press, Cambridge, 1990.Google Scholar
  41. 41. N.N. Malinin. Raschet na polzuchest’ konstrukcionnykh elementov (Creep calculations of structural elements, in Russ.). Mashinostroenie, Moskva, 1981.Google Scholar
  42. 42. L.I. Manevitch, I.V. Andrianov, and V.G. Oshmyan. Mechanics of Periodically Heterogeneous Structures. Springer, Berlin et al., 2002.Google Scholar
  43. 43. J. Meenen and H. Altenbach. A consistent deduction of von Kármán-type plate theories from threedimensional non-linear continuum mechanics. Acta Mechanica, 147:1 – 17, 2001.Google Scholar
  44. 44. F.R.N. Nabarro and H.L. de Villiers. The Physics of Creep. Creep and Creep–resistant Alloys. Taylor & Francis, London, 1995.Google Scholar
  45. 45. K. Naumenko. Modellierung und Berechnung der Langzeitfestigkeit dünnwandiger Flächentragwerke unter Einbeziehung von Werkstoffkriechen und Schädigung. Diss., Fakultät für Maschinenbau, Otto-von-Guericke-Universität, 1996.Google Scholar
  46. 46. K. Naumenko. On the use of the first order shear deformation models of beams, plates and shell in creep lifetime estimations. Technische Mechanik, 20(3):215 – 226, 2000.Google Scholar
  47. 47. W. Noll. A new mathematical theory of simple materials. Archive for Rational Mechanics and Analysis, 48:1 – 50, 1972.Google Scholar
  48. 48. J.F. Nye. Physical Properties of Crystals. Oxford Science Publications, Oxford, 1992.Google Scholar
  49. 49. F.K.G. Odqvist. Mathematical Theory of Creep and Creep Rupture. Clarendon, Oxford, 1974.Google Scholar
  50. 50. F.K.G. Odqvist and J. Hult. Kriechfestigkeit metallischer Werkstoffe. Springer, Berlin u.a., 1962.Google Scholar
  51. 51. P.R. Onck and E. van der Giessen. Growth of an initially sharp crack by boundary cavitation. J. Mech. Phys. Solids, 47:99 – 139, 1999.Google Scholar
  52. 52. E. Sanchez Palancia. Introduction aux méthodes asymptotiques et à l’homogénéisation. Masson, Paris, 1992.Google Scholar
  53. 53. V. Palmov. Vibrations in Elasto-Plastic Bodies. Springer, Berlin et al., 1998.Google Scholar
  54. 54. P. Paul. Macroscopic criteria of plastic flow and brittle fracture. In H. Liebowitz, editor, Fracture: An advanced treatise, Vol. II (Mathematical Fundamentals). Academic Press, New York, 1968.Google Scholar
  55. 55. I.J. Perrin and D.R. Hayhurst. Creep constitutive equations for a 0.5Cr–0.5Mo–0.25V ferritic steel in the temperature range 600–675C. J. Strain Anal., 31(4):299 – 314, 1994.Google Scholar
  56. 56. Yu. N. Rabotnov. Creep Problems in Structural Members. North-Holland, Amsterdam, 1969.Google Scholar
  57. 57. Yu. N. Rabotnov. Elements of Hereditary Solid Mechanics. Mir, Moscow, 1977.Google Scholar
  58. 58. M. Reiner. Deformation and Flow. An Elementary Introduction to Rheology. H.K. Lewis & Co., London, 3rd edition, 1969.Google Scholar
  59. 59. E. Reissner. On the theory of bending of elastic plates. J. Math. Phys., 23:184 – 191, 1944.Google Scholar
  60. 60. E. Reissner. Variational theorem in elasticity. J. Math. Phys., 29:90 – 95, 1950.Google Scholar
  61. 61. H. Riedel. Fracture at High Temperatures. Materials Research and Engineering. Springer, Berlin et al., 1987.Google Scholar
  62. 62. H. Rothert. Lineare konstitutive Gleichungen der viskoelastischen Cosseratfläche. ZAMM, 55:647 – 656, 1975.Google Scholar
  63. 63. J.J. Skrzypek. Plasticity and Creep. CRC Press, Boca Raton et al., 1993.Google Scholar
  64. 64. A. Służalec. Introduction to Nonlinear Thermomechanics. Springer, Berlin et al., 1992.Google Scholar
  65. 65. P. Suquet. Plasticité et homogénéisation. Thèse de doctorat d’etat, Université Pierre et Marie Curie, Paris 6, 1982.Google Scholar
  66. 66. E. van der Giessen, B.-N. Nguyen, and P.R. Onck. From a microstructural to a continuum model for creep fracture. In A. Benallal, editor, Continuous Damage and Fracture, pages 129 – 136. Elsevier, Paris et al., 2000.Google Scholar
  67. 67. E. van der Giessen and V. Tvergaard. Development of final creep failure in polycrystalline aggregates. Acta Metall. Mater., 42:959 – 973, 1994.Google Scholar
  68. 68. M. Życzkowski. Combined Loadings in the Theory of Plasticity. PWN-Polish Scientific Publisher, Warszawa, 1981.Google Scholar

Authors and Affiliations

  • H. Altenbach
    • 1
  1. 1.Martin-Luther-Universität Halle-Wittenberg, 06099 HalleGermany

Personalised recommendations