Advertisement

Abstracting the Patient Therapeutic History through a Heuristic-Based Qualitative Handling of Temporal Indeterminacy

  • Jacques Bouaud
  • Brigitte Séroussi
  • Baptiste Touzet
Conference paper
  • 449 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2780)

Abstract

Applying a guideline-based therapeutic strategy in the context of a chronic disease requires the decision maker, physician or system, to have a clear picture, at the appropriate level of abstraction, of a patient’s particular therapeutic history. However, like most clinical data, information on past treatments is subject to temporal indeterminacy. We propose temporal abstraction mechanisms based on a simple qualitative and heuristic treatment of temporal indeterminacy on period bounds. Allen’s intervals are extended to unknown bounds, then the conditions for continuity and simultaneousness are analysed. The aim is to restore a patient’s therapeutic history, in the case of chronic diseases, to position her within guideline therapeutic recommendations.

Keywords

Past Treatment Unknown Bound Temporal Abstraction Heuristic Principle Heuristic Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shahar, Y., Musen, M.A.: Knowledge-based temporal abstraction in clinical domains. Artif. Intell. Med. 8, 267–298 (1996)CrossRefGoogle Scholar
  2. 2.
    Shahar, Y., Musen, M.A.: Resume: a temporal-abstraction system for patient monitoring. Comput. Biomed. Res. 26, 255–273 (1993)CrossRefGoogle Scholar
  3. 3.
    Shahar, Y., Miksch, S., Johnson, P.: The Asgaard project: a task-specific framework for the application and critiquing of time-oriented guidelines. Artif. Intell. Med. 14, 29–52 (1998)CrossRefGoogle Scholar
  4. 4.
    Duftschmid, G., Miksch, S., Gall, W.: Verification of temporal scheduling constraints in clinical practice guidelines. Artif. Intell. Med. 25, 93–121 (2002)CrossRefGoogle Scholar
  5. 5.
    O’Connor, M.J., Tu, S.W., Musen, M.A.: The Chronus II temporal database mediator. J. Am. Med. Inform. Assoc. 8, 567–571 (2002)Google Scholar
  6. 6.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communication of the ACM 26, 832–843 (1983)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dyreson, C.E., Snowgrass, R.T.: Supporting valid-time indeterminacy. Transaction on Database Systems 23, 1–57 (1998)CrossRefGoogle Scholar
  8. 8.
    Freksa, C.: Temporal reasoning based on semi-intervals. Artif. Intell. 54, 199–227 (1992)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Badaloni, S., Giacomin, M.: A fuzzy extension of allen’s intervals algebra. In: Lamma, E., Mello, P. (eds.) AI*IA 1999. LNCS (LNAI), vol. 1792, pp. 155–165. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jacques Bouaud
    • 1
  • Brigitte Séroussi
    • 1
  • Baptiste Touzet
    • 1
  1. 1.DPA/DSI/AP–HPSTIMParisFrance

Personalised recommendations