VIE-DIAB: A Support Program for Telemedical Glycaemic Control

  • Christian Popow
  • Werner Horn
  • Birgit Rami
  • Edith Schober
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2780)


Ambulatory care supporting long-term treatment of type I diabetes mellitus (DM) is based on the analysis of daily notes of serum glucose measurements, carbohydrate intake, and insulin dosage. In order to improve glycaemic control, telemedicine support aims at improving the communication between patients and diabetologists. Patient data are collected using mobile phone services. Weekly responses from the diabetes care center aims at helping the patient to optimize glycaemic control. The telemedical support system VIE- DIAB integrates data collection, visualization, and recommendation handling by using mobile phone and internet services. Its core is a module visualizing a summary of the patient’s diary. Data are displayed using 4x7 multiples that represent the serum glucose values of 28 days on one page.


Glycaemic Control Serum Glucose Ambulatory Care Insulin Dosage Carbohydrate Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Montori, V.M., Smith, S.A.: Information systems in diabetes: in search of the holy grail in the era of evidence-based diabetes care. Exp. Clin. Endocrinol. Diabetes 109, 358–372 (2001)CrossRefGoogle Scholar
  2. 2.
    Bellazzi, R., Montani, S., Riva, A., Stefanelli M.: Web-based telemedicine systems for home care: technical issues and experiences. Comput. Methods. Prog. Biomed. 64, 175–187 (2001)CrossRefGoogle Scholar
  3. 3.
    Montani, S., Bellazzi, R., Quaglini, S., d’Annunzio, G.: Meta-analysis of the effect of the use of computer-based systems on the metabolic control of patients with diabetes mellitus. Diabetes Technol. Ther. 3, 347–356 (2001)CrossRefGoogle Scholar
  4. 4.
    Hejlesen, O.K., Plougmann, S., Cavan, D.A.: DiasNet–an Internet tool for communication and education in diabetes. Stud. Health. Technol. Inform. 77, 563–567 (2000)Google Scholar
  5. 5.
    Smith, L., Weinert, C.: Telecommunication support for rural women with diabetes. Diabetes Educ. 26, 645–655 (2000)CrossRefGoogle Scholar
  6. 6.
    Shahar, Y.: A framework for knowledge-based temporal abstraction. Arti.l Intell. 90, 79–133 (1997)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bellazzi, R., Larizza, C., Riva, A.: Temporal Abstraction for Interpreting Diabetic Patients Monitoring Data. Intell. Data Anal. 2, 97–122 (1998)CrossRefGoogle Scholar
  8. 8.
    Horn, W., Popow, C., Unterasinger, L.: Support for Fast Comprehension of ICU Data: Visualization Using Metaphor Graphics. Meth. Inform. Med. 40, 421–424 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Christian Popow
    • 1
  • Werner Horn
    • 2
    • 3
  • Birgit Rami
    • 1
  • Edith Schober
    • 1
  1. 1.Dept. Pediatrics and Adolescent MedicineUniversity of ViennaWienAustria
  2. 2.Dept. Medical Cybernetics and Artificial IntelligenceUniversity of ViennaAustria
  3. 3.Austrian Research Institute for Artificial Intelligence (ÖFAI)ViennaAustria

Personalised recommendations