Idan: A Distributed Temporal-Abstraction Mediator for Medical Databases

  • David Boaz
  • Yuval Shahar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2780)


Many clinical domains involve the collection of different types and substantial numbers of data over time. This is especially true when monitoring chronic patients. It is highly desirable to assist human users (e.g., clinicians, researchers), or decision support applications (e.g., diagnosis, therapy, quality assessment), who need to interpret large amounts of time-oriented data by providing a useful method for querying not only raw data, but also its abstractions. A temporal-abstraction database mediator is a modular approach designed for answering abstract, time-oriented queries. Our approach focuses on the integration of multiple time-oriented data sources, domain-specific knowledge sources, and computation services. The mediator mediates abstract time-oriented queries from any application to the appropriate distributed components that can answer these queries. We describe a highly modular, distributed implementation of the temporal database mediator architecture in the medical domain, and provide insights regarding the effective implementation and application of such an architecture.


Knowledge Source Client Application Temporal Reasoning Temporal Abstraction Knowledge Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nguyen, J.H., Shahar, Y., Tu, S.W., Das, A.K., Musen, M.A.: Integration of Temporal Reasoning and Temporal-Data Maintenance Into A Reusable Database Mediator to Answer Abstract, Time-Oriented Queries: The Tzolkin System. Journal of Intelligent Information Systems 13(1/2), 121–145 (1999)CrossRefGoogle Scholar
  2. 2.
    Wiederhold, G.: Mediators in the architecture of future information systems. IEEEComputer 25, 38–50 (1992)CrossRefGoogle Scholar
  3. 3.
    Wiederhold, G., Genesereth, M.: The Conceptual Basis of Mediation Services. IEEE Expert 12(5), 38–47 (1997)CrossRefGoogle Scholar
  4. 4.
    Shahar, Y.: A framework for knowledge-based temporal abstraction. Artificial Intelligence 90(1–2), 79–133 (1997)zbMATHCrossRefGoogle Scholar
  5. 5.
    Shahar, Y., Musen, M.A.: Knowledge-based temporal abstraction in clinical domains. Artificial Intelligence in Medicine 8(3), 267–298 (1996)CrossRefGoogle Scholar
  6. 6.
    Shahar, Y.: Knowledge-based temporal interpolation. Journal of Experimental and Theoretical Artificial Intelligence 11, 123–144 (1999)zbMATHCrossRefGoogle Scholar
  7. 7.
    Shahar, Y.: Dynamic temporal interpretation contexts for temporal abstraction. Annals of Mathematics and Artificial Intelligence 22(1-2), 159–192 (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Shahar, Y., Chen, H., Stites, D.P., Basso, L.V., Kaizer, H., Wilson, D.M., Musen, M.A.: Semiautomated acquisition of clinical temporal-abstraction knowledge. Journal of the American Medical Informatics Association 6, 494–511 (1999)Google Scholar
  9. 9.
    Chakravarty, S., Shahar, Y.: CAPSUL: A Constraint-Based Specification of Repeating Patterns in Time-Oriented Data. Annals of Mathematics and Artificial Intelligence (AMAI) 30, 3–22 (2000)zbMATHCrossRefGoogle Scholar
  10. 10.
    Shahar, Y., Cheng, C.: Model-Based Visualization of Temporal Abstractions. Computational Intelligence 16(2), 279–306 (2000)CrossRefGoogle Scholar
  11. 11.
    Shahar, Y., Young, O., Shalom, E., Mayaffit, A., Moskovitch, R., Hessing, A., Galperin, M.: DEGEL: A Hybrid, multiple-ontology framework for specification and retrieval of clinical guidelines. In: Dojat, M., Keravnou, E.T., Barahona, P. (eds.) AIME 2003. LNCS (LNAI), vol. 2780, pp. 122–131. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Chittaro, L., Combi, C.: Representation of Temporal Intervals and Relations: Information Visualization Aspects and their Evaluation. In: Bettini, C., Montanari, A. (eds.) Proceedings of the Eighth International Symposium on Temporal Representation and reasoning (TIME 2001), pp. 13–20. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar
  13. 13.
    O’Connor, M.J., Grosso, W.E., Tu, S.W., Musen, M.A.: RASTA: A Distributed Temporal Abstraction System to Facilitate Knowledge-Driven Monitoring of Clinical Databases. In: Proceedings of MEDINFO-2001, the Tenth World Congress on Medical Informatics, London, UK, pp. 508–512 (2001)Google Scholar
  14. 14.
    O’Connor, M., Tu, S.W., Musen, M.A.: The Chronus II Temporal Database Mediator. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 567–571. Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • David Boaz
    • 1
  • Yuval Shahar
    • 1
  1. 1.Department of Information Systems EngineeringBen Gurion UniversityBeer ShevaIsrael

Personalised recommendations