Multi-agent Approach for Image Processing: A Case Study for MRI Human Brain Scans Interpretation

  • Nathalie Richard
  • Michel Dojat
  • Catherine Garbay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2780)


Image interpretation consists in finding a correspondence between radiometric information and symbolic labelling with respect to specific spatial constraints. To cope with the difficulty of image interpretation, several information processing steps are required to gradually extract information from the image grey levels and to introduce symbolic information. In this paper, we evaluate the use of situated cooperative agents as a framework for managing such steps. Dedicated agent behaviours are dynamically adapted function of their position in the image, topographic relationships and radiometric information available. Acquired knowledge is diffused to acquaintance and incremental refinement of interpretation is obtained through focalisation and coordination of agents tasks. Based on several experiments on real images we demonstrate the potential interest of multi-agents for MRI brain scans interpretation.


Magnetic Resonance Image Brain Bias Field Interpretation Process Local Histogram Magnetic Resonance Image Brain Scan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashburner, J., Friston, K.: Multimodal image coregistration and partitioning - a unified framework. NeuroImage 6, 209–217 (1997)CrossRefGoogle Scholar
  2. 2.
    Germond, L., Dojat, M., Taylor, C., Garbay, C.: A cooperative framework for segmentation of MRI brain scans. Artif. Intell. in Med. 20, 277–294 (2000)Google Scholar
  3. 3.
    Joshi, M., Cui, J., Doolittle, K., Joshi, S., Van Essen, D., Wang, L., Miller, M.I.: Brain segmentation and the generation of cortical surfaces. NeuroImage 9, 461–476 (1999)CrossRefGoogle Scholar
  4. 4.
    Richard, N., Dojat, M., Garbay, C.: Situated Cooperative Agents: a Powerful Paradigm for MRI Brain Scans Segmentation. In: Van Harmelen, F. (ed.) ECAI 2002 Proceedings of the European Conference on Artificial Intelligence, Lyon, Fr, 21-26 July, pp. 33–37. IOS Press, Amsterdam (2002)Google Scholar
  5. 5.
    Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13, 856–876 (2001)CrossRefGoogle Scholar
  6. 6.
    Teo, P.C., Sapiro, G., Wandell, B.A.: Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans. Med. Imag. 16, 852–863 (1997)CrossRefGoogle Scholar
  7. 7.
    Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imag. 18, 897–908 (1999)CrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of Brain MR images through a hidden Markov random field model and the expectation-maximisation algorithm. IEEE Trans. Med. Imag. 20, 45–57 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Nathalie Richard
    • 1
    • 2
  • Michel Dojat
    • 1
    • 2
  • Catherine Garbay
    • 2
  1. 1.Institut National de la Santé et de la Recherche Médicale, U594 – NeuroimagerieFonctionnelle et Métabolique, CHU – Pavillon BGrenobleFrance
  2. 2.Laboratoire TIMC-IMAG, Institut BonniotFaculté de Médecine, Domaine de la MerciLa TroncheFrance

Personalised recommendations