Advertisement

On Plateaued Functions and Their Constructions

  • Claude Carlet
  • Emmanuel Prouff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2887)

Abstract

We use the notion of covering sequence, introduced by C. Carlet and Y. Tarannikov, to give a simple characterization of bent functions. We extend it into a characterization of plateaued functions (that is bent and three-valued functions). After recalling why the class of plateaued functions provides good candidates to be used in cryptosystems, we study the known families of plateaued functions and their drawbacks. We show in particular that the class given as new by Zhang and Zheng is in fact a subclass of Maiorana-McFarland’s class. We introduce a new class of plateaued functions and prove its good cryptographic properties.

Keywords

Boolean functions Bent Three-valued crosscorrelation Nonlinearity Resiliency Stream Ciphers Combinatorial Cryptography 

References

  1. 1.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1990); Journal of Cryptology 4(1) (1991)Google Scholar
  2. 2.
    Botzas, S., Kumar, P.V.: Binary Sequences with Gold-Like Correlation but Larger Liner Span. IEEE Trans. on Information Theory 40(2), 532–537 (1994)CrossRefGoogle Scholar
  3. 3.
    Camion, P., Carlet, C., Charpin, P., Sendrier, N.: On Correlation-immune Functions. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 86–100. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Charpin, P., Pasalic, E.: On propagations characteristics of resilient functions. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 175–195. Springer, Heidelberg (2003) (to appear)CrossRefGoogle Scholar
  5. 5.
    Canteaut, A., Carlet, C., Charpin, P., Fontaine, C.: Propagation characteristics and correlation-immunity of highly nonlinear Boolean functions. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 507–522. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Canteaut, A., Carlet, C., Charpin, P., Fontaine, C.: On cryptographic properties of the cosets of R(1,m). IEEE Transactions on Information Theory 47(4), 1494–1513 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Canteaut, A., Charpin, P., Dobbertin, H.: Binary m-sequences with three-valued crosscorrelation: a proof ofWelch’s conjecture. IEEE Transactions on Information Theory 46, 4–8 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Canteaut, A., Charpin, P., Dobbertin, H.: Weight divisibility of cyclic codes, highly nonlinear functions on F 2m, and crosscorrelation of maximum-length sequences. SIAM Journal of Discrete Mathematics 13(1), 105–138 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Carlet, C.: Partially-bent functions. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 280–291. Springer, Heidelberg (1993)Google Scholar
  10. 10.
    Carlet, C.: Two new classes of bent functions. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 77–101. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Carlet, C.: Generalized Partial Spreads. IEEE Transactions on Information Theory 41(5), 1482–1487 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Carlet, C.: A larger Class of Cryptographic Boolean Functions via a Study of the Maiorana-McFarland Construction. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 549–564. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Carlet, C., Sarkar, P.: Spectral Domain Analysis of Correlation Immune and Resilient Boolean Functions. Finite Fields and Their Applications 8, 120–130 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Carlet, C., Tarannikov, Y.: Covering sequences of Boolean functions and their cryptographic significance. Designs Codes and Cryptography 25, 263–279 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Canteaut, A., Videau, M.: Degree of composition of Highly Nonlinear Functions and Applications to Higher Order Differential Cryptanalysis. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 518–533. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Cusik, T.W., Dobbertin, H.: Some new three-valued crosscorrelation functions for binary m-sequences. IEEE Transaction of Information Theory 42, 1238–1240 (1996)CrossRefGoogle Scholar
  17. 17.
    Dillon, J.F.: Elementary Hadamard Difference sets, Phd Thesis, University of Maryland (1974)Google Scholar
  18. 18.
    Dobbertin, H.: Constructions of bent functions and balanced Boolean functions with high nonlinearity. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 61–74. Springer, Heidelberg (1995)Google Scholar
  19. 19.
    Gold, R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Transaction of Information Theory 14, 154–156 (1968)zbMATHCrossRefGoogle Scholar
  20. 20.
    Helleseth, T.: Some results about the cross-correlation function between two maximal linear sequences. Discrete Mathematics 16, 209–232 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Helleseth, T.: Correlation of m-Sequences and Related Topics. In: Sequences and their Qpplicqtions SETA 1998, pp. 49–66 (1999)Google Scholar
  22. 22.
    Helleseth, T., Vijay Kumar, P.: Sequences with low correlation. In: Pless, V., Huffman, W.C. (eds.) Handbook of Coding Theory, pp. 1765–1855. Elsevier, Amsterdam (1998)Google Scholar
  23. 23.
    Helleseth, T., Martinsen, H.: Sequences with ideal autocorrelation and Difference sets. In: Proceedings of International Meeting on Coding Theory and Cryptography (September 1999)Google Scholar
  24. 24.
    Hollmann, H.D.L., Xiang, Q.: A proof of the Welch and Niho conjectures on crosscorrelation of binary m-sequences. Finite Fields and Their applications 7 (2001)Google Scholar
  25. 25.
    Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)Google Scholar
  26. 26.
    Lai, X.: Higher order derivatives and differential cryptanalysis. In: Proc. Symposium on Communication, Coding and Cryptography, in honor of J. L. Massey on the occasion of his 60’th birthday (1994)Google Scholar
  27. 27.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  28. 28.
    Sarkar, P., Maitra, S.: Nonlinearity bounds and construction pf resilient Boolean functions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 512–532. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  29. 29.
    McFarland, R.L.: A family of noncyclic difference sets. Journal of Combinatorial Theory (15), 1–10 (1973)Google Scholar
  30. 30.
    Pasalic, E., Maitra, S., Johanson, T., Sarkar, P.: New Constructions of Resilient and Correlation Immune Boolean Functions Achieving Upper Bound on Nonlinearity. In: Workshop on Coding and Cryptography. Electronic Notes in Discrete Mathematics. Elsevier, Amsterdam (2001)Google Scholar
  31. 31.
    Pless, V.S., Huffman, W.C.: Handbook of coding theory. Elsevier, Amsterdam (1998)zbMATHGoogle Scholar
  32. 32.
    Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., Vandevalle, J.: Propagation characteristics of Boolean functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 161–173. Springer, Heidelberg (1991)Google Scholar
  33. 33.
    Sarkar, P., Maitra, S.: Constructions of nonlinear Boolean functions with important cryptographic properties. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 485–506. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  34. 34.
    Sarkar, P., Maitra, S.: Nonlinearity bounds and constructions of resilient Boolean functions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 515–532. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  35. 35.
    Mac Williams, F.J., Sloane, N.J.: The theory of error-correcting codes. North-Holland, Amsterdam (1977)Google Scholar
  36. 36.
    Tarannikov, Y.: On resilient Boolean functions with maximum nonlinearity. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 19–30. Springer, Heidelberg (2000)Google Scholar
  37. 37.
    Xiao, G.-Z., Ding, C., Shan, W.: The Stability Theory of Stream Ciphers. LNCS, vol. 561. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  38. 38.
    Guo-Zhen, X., Massey, J.L.: A Spectral Characterization of Correlation- Immune Combining Functions. IEEE Trans. Inf. Theory IT 34(3), 569–571 (1988)Google Scholar
  39. 39.
    Zheng, Y., Zhang, X.: Improved upper bound on the nonlinearity of high order correlation immune functions. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 262–274. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  40. 40.
    Zheng, Y., Zhang, X.M.: Plateaued functions. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 284–300. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  41. 41.
    Zheng, Y., Zhang, X.M.: Improved upper bound on the nonlinearity of high order correlation immune functions. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 264–274. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Claude Carlet
    • 1
  • Emmanuel Prouff
    • 2
  1. 1.INRIA, projet CODES, also member of GREYC-Caen and of the University of Paris 8Le Chesnay CedexFrance
  2. 2.Laboratoire de Recherche en InformatiqueINRIA Projet CODES and University of Paris 11Orsay CedexFrance

Personalised recommendations