Advertisement

Rectangle Attacks on 49-Round SHACAL-1

  • Eli Biham
  • Orr Dunkelman
  • Nathan Keller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2887)

Abstract

SHACAL-1 is a 160-bit block cipher with variable key length of up to 512-bit key based on the hash function SHA-1. It was submitted to the NESSIE project and was accepted as a finalist for the 2nd phase of the evaluation. In this paper we present rectangle attacks on 49 rounds out of the 80 rounds of SHACAL-1. The attacks require 2151.9 chosen plaintexts or ciphertexts and have time complexity of 2508.5 49-round SHACAL-1 encryptions. These are the best known attacks against SHACAL-1. In this paper we also identify and fix some flaws in previous attacks on SHACAL-1.

References

  1. 1.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  2. 2.
    Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack – Rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Biham, E., Dunkelman, O., Keller, N.: New Results on Boomerang and Rectangle Attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Handschuh, H., Knudsen, L.R., Robshaw, M.J.: Analysis of SHA-1 in Encryption Mode. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 70–83. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Handschuh, H., Naccache, D.: SHACAL. In: Preproceedings of NESSIE first workshop, Leuven (2000)Google Scholar
  7. 7.
    Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Kim, J., Moon, D., Lee, W., Hong, S., Lee, S., Jung, S.: Amplified Boomerang Attack against Reduced-Round SHACAL. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 243–253. Springer, Heidelberg (2002) (to appear)CrossRefGoogle Scholar
  9. 9.
    Saarinen, M.-J.O.: Cryptanalysis of Block Ciphers Based on SHA-1 and MD5, these proceedingsGoogle Scholar
  10. 10.
    NESSIE – New European Schemes for Signatures, Integrity and Encryption, http://www.nessie.eu.org/nessie
  11. 11.
    NESSIE, Performance of Optimized Implementations of the NESSIE Primitives, NES/DOC/TEC/WP6/D21/2Google Scholar
  12. 12.
    NESSIE, Portfolio of recommended cryptographic primitivesGoogle Scholar
  13. 13.
    US National Bureau of Standards, Secure Hash Standard, Federal Information Processing Standards Publications No. 180-2 (2002)Google Scholar
  14. 14.
    Van Den Bogeart, E., Rijmen, V.: Differential Analysis of SHACAL, NESSIE internal report NES/DOC/KUL/WP3/009/a (2001)Google Scholar
  15. 15.
    Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Eli Biham
    • 1
  • Orr Dunkelman
    • 1
  • Nathan Keller
    • 2
  1. 1.Computer Science DepartmentTechnionHaifaIsrael
  2. 2.Mathematics DepartmentTechnionHaifaIsrael

Personalised recommendations