Advertisement

PARSHA-256 – A New Parallelizable Hash Function and a Multithreaded Implementation

  • Pinakpani Pal
  • Palash Sarkar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2887)

Abstract

In this paper, we design a new hash function PARSHA-256. PARSHA-256 uses the compression function of SHA-256 along with the Sarkar-Schellenberg composition principle. As a consequence, PARSHA-256 is collision resistant if the compression function of SHA-256 is collision resistant. On the other hand, PARSHA-256 can be implemented using a binary tree of processors, resulting in a significant speed-up over SHA-256. We also show that PARSHA-256 can be efficiently implemented through concurrent programming on a single processor machine using a multithreaded approach. Experimental results on P4 running Linux show that for long messages the multithreaded implementation is faster than SHA-256.

Keywords

hash function SHA-256 parallel algorithm binary tree 

References

  1. 1.
    Bellare, M., Micciancio, D.: A New Paradigm for Collision-Free Hashing: Incrementality at Reduced Cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Bosselaers, A., Govaerts, R., Vandewalle, J.: SHA: A Design for Parallel Architectures? In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 348–362. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  4. 4.
    Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A strengthened version of RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Dobbertin, H.: Cryptanalysis of MD4. Journal of Cryptology 11(4), 253–271 (1998)zbMATHCrossRefGoogle Scholar
  6. 6.
    Knudsen, L., Preneel, B.: Construction of Secure and Fast Hash Functions Using Nonbinary Error-Correcting Codes. IEEE Transactions on Information Theory 48(9), 2524–2539 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  8. 8.
    Nakajima, J., Matsui, M.: Performance Analysis and Parallel Implementation of Dedicated Hash Functions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 165–180. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Preneel, B.: The state of cryptographic hash functions. In: Damgård, I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 158–182. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Sarkar, P., Schellenberg, P.J.: A Parallelizable Design Principle for Cryptographic Hash Functions. IACR e-print server, 2002/031, http://eprint.iacr.org
  11. 11.
    Schnorr, C., Vaudenay, S.: Parallel FFT-Hashing. In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 149–156. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Pinakpani Pal
    • 1
  • Palash Sarkar
    • 1
  1. 1.Cryptology Research Group ECSU and ASU Indian Statistical InstituteKolkataIndia

Personalised recommendations