Advertisement

Cryptanalysis of IDEA-X/2

  • Håvard Raddum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2887)

Abstract

IDEA is a 64-bit block cipher with a 128-bit key designed by J. Massey and X. Lai. At FSE 2002 a slightly modified version called IDEA-X was attacked using multiplicative differentials. In this paper we present a less modified version of IDEA we call IDEA-X/2, and an attack on this cipher. This attack also works on IDEA-X, and improves on the attack presented at FSE 2002.

Keywords

Cryptography block ciphers differential cryptanalysis IDEA 

References

  1. 1.
    Lai, X., Massey, J.: A Proposal for a New Block Encryption Standard. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer, Heidelberg (1991)Google Scholar
  2. 2.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  3. 3.
    Meier, W.: On the security of the IDEA block cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 371–385. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Daemen, J., Govaerts, R., Vandewalle, J.: Weak Keys for IDEA. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 224–231. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Borst, J., Knudsen, L., Rijmen, V.: Two Attacks on Reduced IDEA. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 1–13. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Hawkes, P.: Differential-Linear Weak Key Classes of IDEA. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Demirci, H.: Cryptanalysis of IDEA using Exact Distributions. Selected Areas in Cryptography, preproceedingsGoogle Scholar
  9. 9.
    Borisov, N., Chew, M., Johnson, R., Wagner, D.: Multiplicative Differentials. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 17–33. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Stinson, D.R.: Cryptography Theory and Practice, p. 179. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Håvard Raddum
    • 1
  1. 1.Dep. of InformaticsThe University of BergenNorway

Personalised recommendations