Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 148))

Abstract

The finite automata model is one of the oldest in formal language theory. For example, finite state machines were used to model neuron nets by McCulloch and Pitts in 1943 [48]; automata with output were introduced by Mealy [50] and Moore [53] in the mid fifties; and the introduction of nondeterministic finite automata by Rabin and Scott in 1959 [58].

Part of the material is from [72].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation, and Compiling, Vol. 1, Prentice-Hall, Englewood Cliffs, 1972.

    Google Scholar 

  2. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers — Principles, Techniques, and Tools, Addison-Wesley, Reading, 1986.

    Google Scholar 

  3. J.C.M. Baeten and W.P. Weijland, Process Algebra, Cambridge University Press, Cambridge, 1990.

    Book  Google Scholar 

  4. J. Berstel and M. Morcrette, Compact Representation of Patterns by Finite Automata, Pixim 89: L’Image Numérique à Paris, André Gagalowicz, ed., Hermes, Paris, 1989, pp. 387–395.

    Google Scholar 

  5. J.A. Brzozowski and E. Leiss, On Equations for Regular Languages, Finite Automata, and Sequential Networks, Theoretical Computer Science, 10 (1980), 19–35.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.A. Brzozowski and C.-J.H. Seger, Asynchronous Circuits, Springer-Verlog, New York, 1995.

    Book  Google Scholar 

  7. J.A. Brzozowski and M. Yoeli, Digital Networks, Prentice-Hall, Englewood Cliffs, 1976.

    Google Scholar 

  8. C. Campeanu, A. Paun, S. Yu, An Efficient Algorithm for Constructing Minimal Cover Automata for Finite Languages, International Journal of Foundations of Computer Science, 13, 1 (2002), 83–97.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Campeanu, N. Santean, S. Yu, Minimal Cover-Automata for Finite Languages, Proceedings of the Third International Workshop on Implementing Automata (WIA’98) 1998, 32–42. An extended version appeared in Theoretical Computer Science, 267 (2002), 3–16.

    Article  MathSciNet  Google Scholar 

  10. J.-M. Champarnaud and D. Maurel, Automata Implementation, Third International Workshop on Implementing Automata, LNCS 1660, Springer, 1999.

    Google Scholar 

  11. A.K. Chandra and L.J. Stockmeyer, Alternation, FOCS, 17 (1976), 98–108.

    MathSciNet  Google Scholar 

  12. A.K. Chandra, D.C. Kozen, L.J. Stockmeyer, Alternation, Journal of the ACM, 28 (1981), 114–133.

    Article  MathSciNet  MATH  Google Scholar 

  13. J.H. Chang, O.H. Ibarra and B. Ravikumar, Some Observations Concerning Alternating Turing Machines Using Small Space, Inform. Process. Lett., 25 (1987), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Culik II and S. Dube, Rational and Affine Expressions for Image Description, Discrete Applied Mathematics, 41 (1993), 85–120.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Culik II and S. Dube, Affine Automata and Related Techniques for Generation of Complex Images, Theoretical Computer Science, 116 (1993), 373–398.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Culik II and T. Harju, Splicing Semigroups of Dominoes and DNA, Discrete Applied Mathematics, 31 (1991), 261–277.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Culik II and J. Kari, Image Compression Using Weighted Finite Automata, Computer and Graphics, 17, 3 (1993), 305–313.

    Article  Google Scholar 

  18. V. Diekert and G. Rozenberg edited, The Book of Traces, World Scientific, 1995.

    Google Scholar 

  19. D. Drusinsky and D. Harel, On the Power of Bounded Concurrency I: Finite Automata, Journal of the ACM, 41 (1994), 517–539.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Dwork and L. Stockmeyer, A Time Complexity Gap for Two-Way Probabilistic Finite-State Automata, SIAM Journal on Computing,19 (1990), 1011–1023.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Eilenberg, Automata, Languages, and Machines, Vol. A, Academic Press, New York, 1974.

    MATH  Google Scholar 

  22. S. Eilenberg, Automata, Languages, and Machines, Vol. B, Academic Press, New York, 1974

    MATH  Google Scholar 

  23. A. Fellah, Alternating Finite Automata and Related Problems, PhD Dissertation, Dept. of Math. and Computer Sci., Kent State University, 1991.

    Google Scholar 

  24. A. Fellah, H. Jürgensen, S. Yu, Constructions for Alternating Finite Automata, Intern. J. Computer Math., 35 (1990), 117–132.

    Article  MATH  Google Scholar 

  25. H. Goeman, On Minimizing Cover Automata for Finite Languages in O(n log n) Time, Seventh International Conference on Implementation and Application of Automata,121–130.

    Google Scholar 

  26. L. Guo, K. Salomaa, and S. Yu, Synchronization Expressions and Languages, Proceedings of the Sixth IEEE Symposium on Parallel and Distributed Processing, (1994), 257–264.

    Google Scholar 

  27. M.A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, 1978.

    MATH  Google Scholar 

  28. T. Head, Formal Language Theory and DNA: An Analysis of the Generative Capacity of Specific Recombinant Behaviors, Bull. Math. Biol.,49 (1987), 737–759.

    MathSciNet  MATH  Google Scholar 

  29. F.C. Hennie, Finite-State Models for Logical Machines, Wiley, New York, 1968.

    MATH  Google Scholar 

  30. T. Hirst and D. Harel, On the Power of Bounded Concurrency II: Pushdown Automata, Journal of the ACM, 41 (1994), 540–554.

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Honda, M. Nasu and S. Hirose, F-Recognition of Fuzzy Languages, Fuzzy Automata and Decision Processes, edited by M.M. Gupta, G.N. Saridis and B.R. Gaines, North-Holland, 1977, 149–168.

    Google Scholar 

  32. J.E. Hoperoft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, 1979, 189–196.

    Google Scholar 

  33. K. Inoue, I. Takanami, and H. Tanaguchi, Two-Dimensional Alternating Turing Machines, Proc. 14th Ann. ACM Symp. On Theory of Computing, (1982), 3746.

    Google Scholar 

  34. K. Inoue, I. Takanami, and H. Tanaguchi, A Note on Alternating On-line Turing Machines, Information Processing Letters, 15, 4 (1982), 164–168.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Kaneps, R. Frievalds, Running Time to Recognize Non-Regular Languages by 2-Way Probabilistic Automata, in ICALP’91, LNCS, Springer-Verlag, New York/Berlin (1991), vol 510, 174–185.

    Google Scholar 

  36. S.C. Kleene, Representation of Events in Nerve Nets and Finite Automata, Automata Studies,1996, pp.2–42, Princeton Univ. Press, Princeton, N.J.

    Google Scholar 

  37. D.E. Knuth, J.H. Morris, and V.R. Pratt, Fast Pattern Matching in Strings, SIAM Journal on Computing, 6, 2 (1977), 323–350.

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Kozen, On Parallelism in Turing Machines, Proceedings of 17th FOCS, (1976), 89–97.

    Google Scholar 

  39. R.E. Ladner, R.J. Lipton and L.J. Stockmeyer, Alternating Pushdown Automata, Proc. 19th IEEE Symp. on Foundations of Computer Science, Ann Arbor, MI, (1978), 92–106.

    Google Scholar 

  40. E.T. Lee and L.A. Zadeh, Note on Fuzzy Languages, Information Sciences, 1 (1969), 421–434.

    Article  MathSciNet  Google Scholar 

  41. E. Leiss, Succinct Representation of Regular Languages by Boolean Automata, Theoretical Computer Science, 13 (1981), 323–330.

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Leiss, On Generalized Language Equations, Theoretical Computer Science, 14 (1981), 63–77.

    Article  MathSciNet  MATH  Google Scholar 

  43. E. Leiss, Succinct Representation of Regular Languages by Boolean Automata II, Theoretical Computer Science, 38 (1985), 133–136.

    Article  MathSciNet  MATH  Google Scholar 

  44. E. Leiss, Language Equations over a One-letter Alphabet with Union, Concatenation and Star: A Complete Solution, Theoretical Computer Science, 131 (1994), 311–330.

    Article  MathSciNet  MATH  Google Scholar 

  45. E. Leiss, Unrestricted Complementation in Language Equations over a One-letter Alphabet, Theoretical Computer Science, 132 (1994), 71–84.

    Article  MathSciNet  MATH  Google Scholar 

  46. P.A. Lindsay, Alternation and w-type Turing Acceptors, Theoretical Computer Science, 43 (1986), 107–115.

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Mateescu, A. Salomaa, K. Salomaa, S. Yu, Lexical Analysis with a Simple Finite-Fuzzy-Automaton Model, Journal of Universal Computing, 1, 5 (1995).

    MathSciNet  Google Scholar 

  48. W.S. McCulloch and W. Pitts, A Logical Calculus of the Ideas Immanent in Nervous Activity, Bull. Math. Biophysics, 5 (1943), 115–133.

    Article  MathSciNet  MATH  Google Scholar 

  49. R. McNaughton, Counter-Free Automata, MIT Press, Cambridge, 1971.

    MATH  Google Scholar 

  50. G.H. Mealy, A Method for Synthesizing Sequential Circuits, Bell System Technical J., 34, 5 (1955), 1045–1079.

    MathSciNet  Google Scholar 

  51. M. Mizumoto, J. Toyoda, and K. Tanaka, Fuzzy Languages, Systems, Computers, Controls, 1 (1970), 36–43.

    MathSciNet  Google Scholar 

  52. M. Mizumoto, J. Toyoda, and K. Tanaka, Various Kinds of Automata with Weights, Journal of Computer and System Sciences, 10 (1975), 219–236.

    Article  MathSciNet  MATH  Google Scholar 

  53. E.F. Moore, Gedanken Experiments on Sequential Machines, Automata Studies,1966, pp. 129–153, Princeton Univ. Press, Princeton, N.J.

    Google Scholar 

  54. M. Nasu and N. Honda, Fuzzy Events Realized by Finite Probabilistic Automata, Information and Control, 12 (1968), 284–303.

    Article  MathSciNet  MATH  Google Scholar 

  55. O. Nierstrasz, Regular Types for Active Objects, OOPSLA’93,1–15.

    Google Scholar 

  56. W.J. Paul, E.J. Prauss and R. Reischuck, On Alternation, Acta Inform., 14 (1980), 243–255.

    Article  MathSciNet  MATH  Google Scholar 

  57. D. Perrin, (Chapter 1) Finite Automata, Handbook of Theoretical Computer Science, Vol. B, edited by J. van Leeuwen, The MIT Press, 1990.

    Google Scholar 

  58. M.O. Rabin and D. Scott, Finite Automata and Their Decision Problems“, IBM J. Res., 3, 2 (1959), 115–125.

    Article  MathSciNet  Google Scholar 

  59. W.L. Ruzzo, Tree-size Bounded Alternation, Journal of Computer and System Sciences, 21 (1980), 218–235.

    Article  MathSciNet  MATH  Google Scholar 

  60. A. Salomaa, Theory of Automata, Pergamon Press, Oxford, 1969.

    MATH  Google Scholar 

  61. A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, Rockville, Maryland, 1981.

    Google Scholar 

  62. K. Salomaa and S. Yu, Loop-Free Alternating Finite Automata, Technical Report 482, Department of Computer Science, The Univ. of Western Ontario, 1996.

    Google Scholar 

  63. K. Salomaa, X. Wu, and S. Yu, An Efficient Implementation of Regular Languages Using r-AFA, Proceedings of the Second International Workshop on Implementing Automata (WIA’97), Springer LNCS 1436, 176–184.

    Google Scholar 

  64. K. Salomaa, S. Yu, Q. Zhuang, The State Complexities of Some Basic Operations on Regular Languages, Theoretical Computer Science,125 (1994), 315328.

    Google Scholar 

  65. N. Santean, Towards a Minimal Representation for Finite Languages: Theory and Practice, MSc Thesis, Department of Computer Science, The University of Western Ontario, 2000.

    Google Scholar 

  66. E.S. Santos, Maximin Automata, Information and Control, 13 (1968), 363–377.

    Article  MathSciNet  MATH  Google Scholar 

  67. E.S. Santos, Realization of Fuzzy Languages by Probabilistic, Max-Product, and Maximin Automata, Information Sciences, 8 (1975), 39–53.

    Article  MATH  Google Scholar 

  68. E.S. Santos, Regular Fuzzy Expressions Fuzzy Automata, Fuzzy Automata and Decision Processes, edited by M.M. Gupta, G.N. Saridis and B.R. Gaines, North-Holland, 1977, 169–175.

    Google Scholar 

  69. J Shallit and J. Stolfi, Two Methods for Generating Fractals, Computers @4 Graphics, 13 (1989), 185–191.

    Article  Google Scholar 

  70. D. Wood, Theory of Computation, Wiley, New York, 1987.

    MATH  Google Scholar 

  71. D. Wood and S. Yu, Automata Implementation, Second International Workshop on Implementing Automata, LNCS 1436, Springer, 1998.

    Google Scholar 

  72. S. Yu: Regular Languages, in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer 1997.

    Google Scholar 

  73. S. Yu and Q. Zhuang, On the State Complexity of Intersection of Regular Languages, ACM SIGACT News, 22, 3, (1991), 52–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, S. (2004). Finite Automata. In: Martín-Vide, C., Mitrana, V., Păun, G. (eds) Formal Languages and Applications. Studies in Fuzziness and Soft Computing, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39886-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39886-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53554-3

  • Online ISBN: 978-3-540-39886-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics