Randomly Distributed Tasks in Bounded Time

  • Alain Bui
  • Marc Bui
  • Devan Sohier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2877)


Random walk is the standard modeling for a randomly circulating token in a network, in distributed computing. In particular, this attractive technique can be used to achieve a global computation using a subset of computers over a network. In this paper, we present two original methods to automatically compute the processing time through hitting times. We also propose a solution to determine the number of resources necessary to achieve a global computation.


Random Walk Span Tree Complete Graph Mobile Agent Transition Probability Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldous, D., Fill, J.A.: Reversible Markov Chains and Random Walks on graphs (book draft)Google Scholar
  2. 2.
    Aleliunas, R., Karp, R., Lipton, R., Lovasz, L., Rackoff, C.: Random walks, universal traversal sequences and the complexity of maze problems. In: 20th Annual Symposium on Foundations of Computer Science, pp. 218–223 (1979)Google Scholar
  3. 3.
    Broder, A.Z., Frieze, A.M., Suen, S., Upfal, E.: Optimal construction of edge-disjoint paths in random graphs. In: SODA: ACM-SIAM Symposium on Discrete Algorithms (1994)Google Scholar
  4. 4.
    Bui, A., Bui, M., Lavault, C.: On the hierarchy of functioning rules in distributed computing. RAIRO operations research 33(1), 15–27 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bui, M., Das, S.K., Datta, A.K., Nguyen, D.T.: Randomized mobile agent based routing in wireless networks. International Journal of Foundations of Computer Science 12(3), 365–384 (2001)CrossRefGoogle Scholar
  6. 6.
    Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R., Tiwari, P.: The electrical resistance of a graph captures its commute and cover times. Computational Complexity 6(4) (1997)Google Scholar
  7. 7.
    Coppersmith, D., Feige, U., Shearer, J.: Random walks on regular and irregular graphs. SIAM Journal on Discrete Mathematics 9(2), 301–308 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Doyle, P.G., Laurie Snell, J.: Random Walks and Electric Networks (2000); first edition 1984 Mathematical Association of AmericaGoogle Scholar
  9. 9.
    Duflot, M., Fribourg, L., Picaronny, C.: Randomized finite-state distributed algorithms as markov chains. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 240–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Feige, U.: A tight lower bound for the cover time of random walks on graphs. Random structures and algorithms 6(4), 433–438 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Feige, U.: A tight upper bound for the cover time of random walks on graphs. Random structures and algorithms 6(1), 51–54 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Flauzac, O., Krajecki, M., Fugere, J.: Confiit: a middleware for peer to peer computing. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2669, Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Foster, I., Kesselman, C.: The GRID: Blueprint for a new Computing Infrastructure. ch. 2. Morgan Kauffman, San Francisco (1998)Google Scholar
  14. 14.
    Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable virtual organizations. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, p. 1. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-stabilizing mutual exclusion. In: 9th ACM symposium on Principles of distributed computing, pp. 119–131 (1990)Google Scholar
  16. 16.
    Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1976)zbMATHGoogle Scholar
  17. 17.
    Lovász, L.: Random walks on graphs: A survey. In: Sz̃onyi, T., Miklós, D., Sós, V.T. (eds.) Combinatorics: Paul Erdos is Eighty, vol. 2, pp. 353–398. János Bolyai Mathematical Society (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alain Bui
    • 1
  • Marc Bui
    • 2
  • Devan Sohier
    • 1
    • 2
  1. 1.Département de Mathématiques et InformatiqueUniversité de Reims Champagne ArdennesReims cedexfrance
  2. 2.LRIA – EPHEParisFrance

Personalised recommendations