Time Constraint Delegation for P2P Data Decryption

  • Tie-Yan Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2802)


Large amount of digital content would be stored safely in peer-to-peer network, with encrypted format. Being requested, a cipher text is downloaded from certain peer and decrypted by a delegated decryptor to obtain the clear text. Observing the need for this new kind of delegation decryption service, we propose a novel time constraint delegation scheme for decrypting p2p data in this paper. The new features of the delegation scheme are that: it uses a flexible secure mobile agent solution without designated delegation server; the time constraint conditional parameter is clearly bound with the protocols; and the computation complexity is greatly reduced by replacing public key computation with hash function. We elaborate the protocol design as well as its security, extensions and properties. Potential applications in content delivery network and pervasive computing scenarios are depicted.


Mobile Agent Proxy Signature Replay Attack Proxy Server Content Delivery Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akamai technologies Inc. EdgeSuite product,
  2. 2.
  3. 3.
    NIST FIPS PUB 180. Secure Hash Standard. NIST (May 1993)Google Scholar
  4. 4.
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  5. 5.
    Watanabe, Y., Numao, M.: Conditional Cryptographic Delegation for P2P Data Sharing. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 309–321. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Mambo, M., Okamoto, E.: Proxy cryptosystems: Delegation of the power to decrypt ciphertexts. IEICE Trans. Fund. Electronics Communications and Comp. Sci. E80-A/1, 54–63 (1997)Google Scholar
  7. 7.
    Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Jakobsson, M.: On quorum controlled asymmetric proxy re-encryption. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 112–121. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Horne, B., Pinkas, B., Sander, T.: Escrow services and incentives in peer-to-peer networks. In: Proc. of ACM EC 2001 (2001)Google Scholar
  10. 10.
    Giles, J., Sailer, R., Verma, D., Chari, S.: Authentication for Distributed Web Caches. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol. 2502, pp. 126–146. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Graf, M.: Demo: Fluid computing. In: First International Conference, Pervasive 2002, Zürich, Switzerland, August 26-28 (2002)Google Scholar
  12. 12.
  13. 13.
    Schelderup, K., Ølnes, J.: Mobile agent security-issues and directions. In: Zuidweg, H., Campolargo, M., Delgado, J., Mullery, A. (eds.) IS&N 1999. LNCS, vol. 1597, pp. 155–167. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures: delegation of the power to sign messages. IEICE Trans. Fund. of Electronic Communications and Comp Sci. E79-A/9, 1338–1354 (1996)Google Scholar
  15. 15.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Tie-Yan Li
    • 1
  1. 1.Infocomm Security DepartmentInstitute for Infocomm Research (I2R)Singapore

Personalised recommendations