A Relational Algebra for Functional Logic Deductive Databases

  • Jesús Manuel Almendros-Jiménez
  • Antonio Becerra-Terón
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2890)


In this paper, we study the integration of functional logic programming and databases by presenting a data model, and a query and data definition language. The data model is adopted from functional logic programming by allowing complex values. The query and data definition language is based on the use of algebra expressions built from a set of algebra operators over an extended relational algebra. In addition, algebra expressions can be used for defining functions, typical in a functional logic program.


Algebra Operator Relational Algebra Database Schema Database Instance Functional Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Beeri, C.: The Power of Languages for the Manipulation of Complex Values. VLDB 4(4), 727–794 (1995)CrossRefGoogle Scholar
  2. 2.
    Almendros-Jiménez, J.M., Becerra-Terón, A.: A Safe Relational Calculus for Functional Logic Deductive Databases. Selected Papers of the WFLP 2003, To appear in Electronic Notes on Theoretical Computer Science, 86(3) (2003)Google Scholar
  3. 3.
    Almendros-Jiménez, J.M., Becerra-Terón, A., Sánchez-Hernández, J.: A Computational Model for Funtional Logic Deductive Databases. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 331–347. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Almendros-Jiménez, J.M., Becerra-Terón, A.: A Framework for Goal-Directed Bottom-Up Evaluation of Functional Logic Programs. In: Kuchen, H., Ueda, K. (eds.) FLOPS 2001. LNCS, vol. 2024, pp. 153–169. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Belussi, A., Bertino, E., Catania, B.: An Extended Algebra for Constraint Databases. TKDE 10(5), 686–705 (1998)Google Scholar
  6. 6.
    Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, CACM 13(6), 377–387 (1970)zbMATHCrossRefGoogle Scholar
  7. 7.
    Codd, E.F.: Relational Completeness of Data Base Sublanguages. In: Rustin, R. (ed.) Database Systems, pp. 65–98. Prentice-Hall, Englewood Cliffs (1972)Google Scholar
  8. 8.
    González-Moreno, J.C., Hortalá-González, M.T., López-Fraguas, F.J., Rodríguez-Artalejo, M.: An Approach to Declarative Programming Based on a Rewriting Logic. JLP 1(40), 47–87 (1999)CrossRefGoogle Scholar
  9. 9.
    Hanus, M.: The Integration of Functions into Logic Programming: From Theory to Practice. JLP 19(20), 583–628 (1994)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Kanellakis, P., Goldin, D.: Constraint Query Algebras. Constraints 1(1-2), 45–83 (1996)CrossRefMathSciNetGoogle Scholar
  11. 11.
    López-Fraguas, F.J., Sánchez-Hernández, J.: Proving Failure in Functional Logic Programs. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 179–193. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jesús Manuel Almendros-Jiménez
    • 1
  • Antonio Becerra-Terón
    • 1
  1. 1.Dpto. de Lenguajes y ComputaciónUniversidad de Almería 

Personalised recommendations