Advertisement

On Strategies of the Narrowing Operator Selection in the Constraint Propagation Method

  • Yuri G. Dolgov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2890)

Abstract

This paper presents an approach that allows us to increase efficiency of the constraint propagation method. This approach consists in using a strategy of calls of narrowing operators in the process of computation on the basis of a dynamic system of priorities. Several strategies are described and the results of numerical experiments are discussed.

Keywords

Logic Program Constraint Satisfaction Constraint Satisfaction Problem Constraint Propagation Class Priority 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benhamou, F., Older, W.: Applying interval arithmetic to real, integer and boolean constraints. Journal of Logic Programming 32(1), 1–24 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kearfott, R.B.: Some Test of Generalized Bisection. ACM Transactions on Mathematical Software 13(3), 197–220 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kleymenov, A., Petunin, D., Semenov, A., Vazhev, I.: A Model of Cooperative Solvers for Computational Problems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 797–802. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Lhomme, O., Gotlieb, A., Rueher, M., Taillibert, P.: Boosting the Interval Narrowing Algorithm. In: Proc. JICSLP 1996, pp. 378–392. MIT Press, Cambridge (1996)Google Scholar
  5. 5.
    Lhomme, O., Gotlieb, A., Rueher, M.: Dynamic optimization of Interval Narrowing Algorithms. Journal of Logic Programming 37(1-3), 165–183 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Older, W., Vellino, A.: Constraint Arithmetic on real Intervals. In: Benhamou, F., Colmerauer, A. (eds.) Constraint Logic Programming: Selected Research, pp. 175–195. MIT Press, Cambridge (1993)Google Scholar
  7. 7.
    Semenov, A.: Solving Integer/Real Nonlinear Equations by Constraint Propagation. Technical Report N12, Institute of Mathematical Modelling, The Technical University of Denmark, Lyngby, Denmark, p. 22 (1994)Google Scholar
  8. 8.
    Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, Essex (1993)Google Scholar
  9. 9.
    Ushakov, D.: Some Formal Aspects of Subdefinite Models. Prepr. / Siberian Division of Russian Acad. Sci. IIS, Novosibirsk 49, 23 (1998)Google Scholar
  10. 10.
    Wallace, R., Freuder, E.: Ordering heuristics for arc consistency algorithms. In: AI/GI/VI 1992, Vancouver, British Columbia, Canada, pp. 163–169 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yuri G. Dolgov
    • 1
  1. 1.A.P. Ershov Institute of Informatics Systems, Siberian Division of the Russian Academy of SciencesNovosibirsk State University 

Personalised recommendations