Separating Search and Strategy in Solver Cooperations

  • Brice Pajot
  • Eric Monfroy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2890)


In the constraint programming community, solver cooperation is now an established paradigm that aims at using several solvers to improve some kind of limitations or inefficiency imposed by the use of a unique solver; solver cooperation applications range over several fields such as heterogeneous domain solving, heterogeneous constraint forms over the same domain, or distributed problem solving. Meanwhile, search-languages have emphasised the need to clearly separate the different steps during a constraint problem resolution. In a similar direction, this paper presents a paradigm that enables the user to properly separate computation strategies from the search phases in solver cooperations.


Cooperation Strategy Search Phase Automate Strategy Single Solver Computational Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbab, F.: Manifold 2.0 reference manual. Technical report, Centrum voor Wiskunde en Informatica (1997)Google Scholar
  2. 2.
    Aiba, A., Yokota, K., Tsuda, H.: Heterogeneous distributed cooperative problem solving system helios. In: Procs of FGCS 1994 (1994)Google Scholar
  3. 3.
    Monfroy, E.: A coordination-based chaotic iteration algorithm for constraint propagation. In: Proceedings of The 15th ACM Symposium on Applied Computing, SAC 2000 (2000)Google Scholar
  4. 4.
    Zoeteweij, P.: Coordination-based distributed constraint solving in dice. In: Proceedings of the 18th ACM Symposium on Applied Computing (SAC 2003). ACM Press, New York (2003)Google Scholar
  5. 5.
    Semenov, A., Petunin, D., Kleymenov, A.: Gmacs: the general-purpose module architecture for building cooperative solvers. In: Procs. of the ERCIM/CompulogNet Workshop on Constraint programming, (2000)Google Scholar
  6. 6.
    Monfroy, E.: Solver Collaboration for Constraint Logic Programming. PhD thesis, Centre de Recherche en Informatique de Nancy INRIA-Lorraine (1996)Google Scholar
  7. 7.
    Hofstedt, P., Seifert, D., Godehardt, E.: A framework for cooperating solvers – a prototypic implementation. In: Proceeding of the Worshop of Cosolv 2001 (2001)Google Scholar
  8. 8.
    Franck, S., Hofstedt, P., Mai, P.: A strategy-oriented meta-solver framework. In: Proceeding of FLAIRS 2003 (2003)Google Scholar
  9. 9.
    Michel, L., Van Hentenryck, P.: Localizer: A modeling language for local search. Tech report, Brown University, Computer Science Department (1997)Google Scholar
  10. 10.
    Michel, L., Van Hentenryck, P.: A constraint-based architecture for local search. In: Proceedings of the 17th ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications (2002)Google Scholar
  11. 11.
    Laburthe, F., Caseau, Y.: SALSA: A language for search algorithms. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, p. 310. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Colombani, Y., Heipcke, S.: Combining solvers and solution algorithms with Mosel. In: Proceedings of the Fourth International Workshop on Integration of AI and OR techniques in Constraint Programming for Combinatorial Optimisation Problems CP-AI-OR 2002, pp. 277–290 (2002)Google Scholar
  13. 13.
    Van Hentenryck, P., Perron, L., Puget, J.: Search and strategies in OPL. ACM Transactions on Computational Logic, TOCL (2000)Google Scholar
  14. 14.
    Monfroy, E., Castro, C.: Basic components for constraint solver cooperations. In: Proceedings of the 18th ACM Symposium on Applied Computing (SAC 2003). ACM Press, New York (2003)Google Scholar
  15. 15.
    Petrov, E., Monfroy, E.: Automatic analysis of composite solvers. In: Proceedings of the 14th Int. Conf. on Tools with Artificial Intelligence (ICTAI). IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  16. 16.
    Caseau, Y., Silverstein, G., Laburthe, F.: Learning hybrid algorithms for vehicle routing problems. TPLP 1, 779–806 (2001)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Szyperski, C.: Component Software. Addison-Wesley, Reading (1998) ISBN: 0-201-17888-5Google Scholar
  18. 18.
    Schmidt, D., Huston Stephen, C.: C++ Network Programming: Systematic Reuse with ACE and Frameworks. Addison-Wesley Longman, Amsterdam (2003)Google Scholar
  19. 19.
    Van Rossum, G., Drake, F.: Python documentation (2002),

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Brice Pajot
    • 1
  • Eric Monfroy
    • 1
  1. 1.Institut de Recherche en Informatique de Nantes (IRIN)University of NantesFrance

Personalised recommendations