Advertisement

Dynamic Modification of System Structures Using LLPNs

  • Berndt Farwer
  • Kundan Misra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2890)

Abstract

In this paper we aim to set up a framework for object Petri net semantics, allowing the modification of object net structures at run-time. The approach uses linear logic Petri nets (LLPNs) and performs the structure modification on a linear logic encoding of the object net. In addition, Valk’s self-modifying Petri nets are shown to be subsumed by LLPNs.

We expand on the existing theory of Farwer’s LLPNs, which are Petri nets with linear logic formulae as tokens. This work in progress uses intuitionistic linear logic as the basis of a method for ensuring desirable properties — such as termination or non-termination — of P/T nets, coloured Petri nets and LLPNs.

Keywords

Linear Logic Proof Tree Camera Place Canonical Formula Synchronisation Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S.: Computational interpretations of linear logic. Theoretical Computer Science 111, 3–57 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Biri, N., Galmiche, D.: A modal linear logic for distribution and mobility. In: Talk given at LL 2002 of FLoC 2002 (2002)Google Scholar
  3. 3.
    Brown, C.: Linear Logic and Petri Nets: Categories, Algebra and Proof. PhD thesis, AI Laboratory, Department of Computer Science, University of Edinburgh (1991)Google Scholar
  4. 4.
    Brown, C., Gurr, D., de Paiva, V.: A linear specification language for Petri nets. Technical Report 363, Computer Science Department, Aarhus University (1991)Google Scholar
  5. 5.
    Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, p. 103. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Engberg, U., Winskel, G.: Petri nets as Models of Linear Logic. In: Arnold, A. (ed.) Proceedings of Colloquium on Trees in Algebra and Programming, Copenhagen, Denmark. LNCS, vol. 389, pp. 147–161. Springer, Heidelberg (1990)Google Scholar
  7. 7.
    Engberg, U.H., Winskel, G.: Linear logic on Petri nets. Technical Report ISSN 0909-0878, BRICS, Department of Computer Science, University of Aarhus, DK-8000 Aarhus C Denmark (February 1994)Google Scholar
  8. 8.
    Farwer, B.: Towards linear logic Petri nets. Technical report, Faculty of Informatics, University of Hamburg (1996)Google Scholar
  9. 9.
    Farwer, B.: A Linear Logic View of Object Systems. In: Burkhard, H.-D., Czaja, L., Starke, P. (eds.) Informatik-Berichte, No. 110: Workshop Concurrency, Specification and Programming, Berlin, September 1998, pp. 76–87. Humboldt- Universität (1998)Google Scholar
  10. 10.
    Farwer, B.: Linear Logic Based Calculi for Object Petri Nets. PhD thesis, Fachbereich Informatik, Universität Hamburg, 1999. Published by Logos Verlag (2000)Google Scholar
  11. 11.
    Farwer, B.: A Linear Logic View of Object Petri nets. Fundamenta Informaticae 37, 225–246 (1999)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Farwer, B.: A multi-region linear logic based calculus for dynamic petri net structures. Fundamenta Informaticae 43(1-4), 61–79 (2000)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Farwer, B., Lomazova, I.: A systematic approach towards object-based petri net formalisms. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, pp. 255–267. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Girard, J.-Y.: Linear logic: its syntax and semantics. In: Girard et al. [15], pp. 1–42Google Scholar
  15. 15.
    Girard, J.-Y., Lafont, Y., Regnier, L. (eds.): Advances in Linear Logic. Lecture notes series of the London Mathematical Society, vol. 222. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  16. 16.
    Jensen, K.: An Introduction to High-Level Petri nets. Technical Report ISSN 0105-8517, Department of Computer Science, University of Aarhus (October 1985)Google Scholar
  17. 17.
    Kis, T., Neuendorf, K.-P., Xirouchakis, P.: Scheduling with Chameleon Nets. In: Farwer, B., Moldt, D., Stehr, M.-O. (eds.) Proceedings of the Workshop on Petri Nets in System Engineering (PNSE 1997), pp. 67–77. Universität Hamburg (1997)Google Scholar
  18. 18.
    Lilius, J.: High-level nets and Linear logic. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 310–327. Springer, Heidelberg (1992)Google Scholar
  19. 19.
    Marti-Oliet, N., Meseguer, J.: From Petri nets to linear logic. Mathematical Structures in Computer Science 1, 69–101 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Meseguer, J., Montanari, U., Sassone, V.: Representation Theorems for Petri nets. In: Foundations of Computer Science: Potential - Theory - Cognition, pp. 239–249 (1997)Google Scholar
  21. 21.
    Misra, K.: On LPetri nets. In: Streignitz, K. (ed.) Proceedings of 13th European Summer School on Logic, Language and Information. European Association for Logic, Language and Information — FoLLI, European Association for Logic, Language and Information — FoLLI (May 2001)Google Scholar
  22. 22.
    Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  23. 23.
    Sassone, V.: On the Algebraic Structure of Petri nets. Bulletin of the EATCS 72, 133–148 (2000)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Troelstra, A.: Substructural Logics, chapter Tutorial on linear logic. Clarendon Press, Oxford (1993)Google Scholar
  25. 25.
    Valk, R.: Self-modifying nets, a natural extension of petri nets. In: Ausiello, G., Böhm, C. (eds.) Automata, Languages and Programming (ICALP 1993), Berlin. LNCS, vol. 62, pp. 464–476. Springer, Heidelberg (1978)Google Scholar
  26. 26.
    Valk, R.: Petri nets as token objects. an introduction to elementary object nets. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 1–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  27. 27.
    Valk, R.: Reference and value semantics for object petri nets. In: Weber, H., Ehrig, H., Reisig, W. (eds.) Colloquium on Petri Net Technologies for Modelling Communication Based Systems, pp. 169–188. Fraunhofer Institute for Software and Systems Engineering ISST, Berlin (1999)Google Scholar
  28. 28.
    Valk, R.: Relating Different Semantics for Object Petri nets. Technical Report B-226-00, TGI - Theoretical Foundations of Computer Science Group, Computer Science, University of Hamburg (June 2000)Google Scholar
  29. 29.
    Valk, R.: Concurrency in Communicating Object Petri nets. In: Agha, G., de Cindio, F., Rozenberg, G. (eds.) Concurrent Object-Oriented Programming and Petri Nets. LNCS, pp. 164–195. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    Valk, R., Girault, C. (eds.): Petri Nets for Systems Engineering – A Guide to Modeling, Verification, and Applications. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Berndt Farwer
    • 1
  • Kundan Misra
    • 2
  1. 1.Department of Computer ScienceUniversity of Hamburg 
  2. 2.Department of Computer ScienceUniversity of Warwick 

Personalised recommendations