Unambiguous Automata Inference by Means of State-Merging Methods

  • François Coste
  • Daniel Fredouille
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2837)


We consider inference of automata from given data. A classical problem is to find the smallest compatible automaton, i.e. the smallest automaton accepting all examples and rejecting all counter-examples. We study unambiguous automata (UFA) inference, an intermediate framework between the hard nondeterministic automata (NFA) inference and the well known deterministic automata (DFA) inference. The search space for UFA inference is described and original theoretical results on both the DFA and the UFA inference search space are given. An algorithm for UFA inference is proposed and experimental results on a benchmark with both deterministic and nondeterministic targets are provided showing that UFA inference outperforms DFA inference.


Search Space Regular Expression Regular Language Bottom Element Deterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Abb98]
    Abbadingo one (1998),
  2. [AS95]
    Alquézar, R., Sanfeliu, A.: Incremental grammatical inference from positive and negative data using unbiased finite state automata. In: Shape, Structure and Pattern Recognition, Proc. Int. Workshop on Structural and Syntactic Pattern Recognition, SSPR 1994, Nahariya (Israel), pp. 291–300 (1995)Google Scholar
  3. [CF00]
    Coste, F., Fredouille, D.: Efficient ambiguity detection in C-NFA, a step toward inference of non deterministic automata. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp. 25–38. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. [CF03]
    Coste, F., Fredouille, D.: What is the search space for the inference of nondeterministic, unambiguous and deterministic automata? Technical report, IRISA (2003) (to appear), download
  5. [Cos99]
    Coste, F.: State merging inference of finite state classifiers. Technical Report INRIA/RR-3695, IRISA (September 1999)Google Scholar
  6. [Die98]
    Dietterich, T.G.: Approximate statistical test for comparing supervised classification learning algorithms. Neural Computation 10(7), 1895–1923 (1998)CrossRefGoogle Scholar
  7. [DLT00]
    Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using non deterministic finite automate. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp. 39–50. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. [DLT01]
    Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSA. In: Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS (LNAI), vol. 2225, pp. 348–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. [DMV94]
    Dupont, P., Miclet, L., Vidal, E.: What is the search space of the regular inference? In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 25–37. Springer, Heidelberg (1994)Google Scholar
  10. [DP90]
    Davey, B., Priesley, A.: Introduction to lattices and order. Cambridge mathematical textbooks (1990)Google Scholar
  11. [Dup96]
    Dupont, P.: Utilisation et apprentissage de modèles de langages pour la reconnaissance de la parole continue. PhD thesis, Ecole Nationale Supérieure des Télécommunications (1996)Google Scholar
  12. [Gol78]
    Gold, E.M.: Complexity of automaton identification from given data. Information and Control 37, 302–320 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [Hig97]
    de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Machine Learning 27, 125–138 (1997)zbMATHCrossRefGoogle Scholar
  14. [Lan92]
    Lang, K.J.: Random dfa’s can be approximately learned from sparse uniform examples. In: 5th ACM workshop on Computation Learning Theorie, pp. 45 – 52 (1992)Google Scholar
  15. [LPP98]
    Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo one DFA learning competition and a new evidence-driven state merging algorithm. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. [OG92]
    Oncina, J., García, P.: Inferring regular languages in polynomial update time. Pattern Recognition and Image Analysis, 49–61 (1992)Google Scholar
  17. [PW89]
    Pitt, L., Warmuth, M.: The minimum consistent DFA problem cannot be approximated within any polynomial. In: 21st ACM Symposium on Theory of Computing, pp. 421–444 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • François Coste
    • 1
  • Daniel Fredouille
    • 1
  1. 1.IRISA-INRIARennes Cedex

Personalised recommendations