Advertisement

Evaluation of Topographic Clustering and Its Kernelization

  • Marie-Jeanne Lesot
  • Florence d’Alché-Buc
  • Georges Siolas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2837)

Abstract

We consider the topographic clustering task and focus on the problem of its evaluation, which enables to perform model selection: topographic clustering algorithms, from the original Self Organizing Map to its extension based on kernel (STMK), can be viewed in the unified framework of constrained clustering. Exploiting this point of view, we discuss existing quality measures and we propose a new criterion based on an F-measure, which combines a compacity with an organization criteria and extend it to their kernel-based version.

References

  1. 1.
    Kohonen, T.: Analysis of a simple self-organizing process. Biol. Cybern. 44, 135–140 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kohonen, T.: Self Organizing Maps. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  3. 3.
    Van Rijsbergen, C.J.: Information Retrieval. Butterworth, London (1979)Google Scholar
  4. 4.
    Heskes, T.: Energy functions for self organizing maps. In: Oya, S., Kaski, E. (eds.) Kohonen Maps, pp. 303–316. Elsevier, Amsterdam (1999)CrossRefGoogle Scholar
  5. 5.
    Bishop, C., Svensén, M., Williams, C.: GTM: The generative topographic mapping. Neural Computation 10, 215–234 (1998)CrossRefGoogle Scholar
  6. 6.
    Graepel, T., Burger, M., Obermayer, K.: Phase transitions in stochastic self-organizing maps. Physical Review E 56, 3876–3890 (1997)CrossRefGoogle Scholar
  7. 7.
    Luttrell, S.: A Bayesian analysis of self-organizing maps. Neural Computation 6, 767–794 (1994)zbMATHCrossRefGoogle Scholar
  8. 8.
    Utsugi, A.: Hyperparameter selection for self organizing maps. Neural Computation 9, 623–635 (1997)CrossRefGoogle Scholar
  9. 9.
    Heskes, T.: Self-organizing maps, vector quantization, and mixture modeling. IEEE TNN 12, 1299–1305 (2001)Google Scholar
  10. 10.
    Graepel, T., Obermayer, K.: Fuzzy topographic kernel clustering. In: Brauer, W. (ed.) Proc. of the 5th GI Workshop Fuzzy Neuro Systems, pp. 90–97 (1998)Google Scholar
  11. 11.
    Rezaee, M., Lelieveldt, B., Reiber, J.: A new cluster validity index for the fuzzy c-means. Pattern Recognition Letters 19, 237–246 (1998)zbMATHCrossRefGoogle Scholar
  12. 12.
    Cottrell, M., Fort, J.: Etude d’un processus d’auto-organisation. Annales de l’Institut Poincaré 23, 1–20 (1987)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Zrehen, S., Blayo, F.: A geometric organization measure for Kohonen’s map. In: Proc. of Neuro-Nîmes, pp. 603–610 (1992)Google Scholar
  14. 14.
    Kiviluoto, K.: Topology preservation in Self Organizing Maps. In: Proc. of Int. Conf. on Neural Networks, vol. 1, IEEE Neural Networks Council, pp. 294–299 (1996)Google Scholar
  15. 15.
    Kaski, S., Lagus, K.: Comparing self-organizing maps. In: Proc. of ICANN, pp. 809–814 (1996)Google Scholar
  16. 16.
    Polani, D., Gutenberg, J.: Organization measures for self-organizing maps. In: Proc. of the Workshop on Self-Organizing Maps, HUT, pp. 280–285 (1997)Google Scholar
  17. 17.
    Bauer, H., Pawelzik, K.: Quantifying the neighborhood preservation of self-organizing feature maps. IEEE TNN 3, 570–579 (1992)Google Scholar
  18. 18.
    Flexer, A.: On the use of self organizing maps for clustering and visualization. Intelligent Data Analysis 5, 373–384 (2001)zbMATHGoogle Scholar
  19. 19.
    Siolas, G., d’Alché Buc, F.: Mixtures of probabilistic PCAs and Fisher kernels for word and document modeling. In: Proc. of ICANN, pp. 769–776 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Marie-Jeanne Lesot
    • 1
  • Florence d’Alché-Buc
    • 1
  • Georges Siolas
    • 1
  1. 1.Laboratoire d’Informatique de Paris VIParisFrance

Personalised recommendations