Skip to main content

A Neural Architecture for Segmentation and Modelling of Range Data

  • Conference paper
Book cover AI*IA 2003: Advances in Artificial Intelligence (AI*IA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2829))

Included in the following conference series:

  • 482 Accesses

Abstract

A novel, two stage, neural architecture for the segmentation of range data and their modeling with undeformed superquadrics is presented. The system is composed by two distinct neural stages: a SOM is used to perform data segmentation, and, for each segment, a multi-layer feed-forward network performs model estimation. The topology-preserving nature of the SOM algorithm makes this architecture suited to cluster data with respect to sudden curvature variations. The second stage is designed to model and compute the inside-outside function of an undeformed superquadric in whatever attitude, starting form the (x,y,z) data triples. The network has been trained using backpropagation, and the weights arrangement, after training, represents a robust estimate of the superquadric parameters. The modelling network is compared also with a second implementation, which estimates separately the parameters of the 2D superellipses generating the 3D model. The whole architectural design is general, it can be extended to other geometric primitives for part-based object recognition, and performs faster than classical model fitting techniques. Detailed explanation of the theoretical approach, along with some experiments with real data are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barr, A.H.: Superquadrics and Angle-preserving Transformations. IEEE Computer Graphics and Applications 1, 11–23 (1981)

    Article  Google Scholar 

  2. Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 94(2), 115–147 (1987)

    Article  Google Scholar 

  3. Dickinson, S.J., Pentland, A.P., Rosenfeld, A.: 3-D Shape Recovery Using Distributed Aspect Matching. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(2), 174–198 (1992)

    Article  Google Scholar 

  4. Edelman, S.: Representation is representation of similarities. Behavioral & Brain Sciences 21, 449–498 (1998)

    Google Scholar 

  5. Edelman, S., Poggio, T.: Bringing the grandmother back into the picture: A memory-based view of object recognition. A.I. Memo 1181. MIT, Cambridge (1991)

    Google Scholar 

  6. Ferrie, F.P., Lagarde, J., Whaite, P.: Darboux Frames, Snakes, and Super- Quadrics: Geometry From the Bottom Up. IEEE Trans. on Pattern Analysis and Machine Intelligence 15(8), 771–784 (1993)

    Article  Google Scholar 

  7. Fritzke, B.: Growing Cell Structures — A Self-Organizing Network for Unsupervised and Supervised Learning. Neural Networks 7(9), 1441–1460 (1994)

    Article  Google Scholar 

  8. Hummel, J.E., Biederman, I.: Dynamic binding in a neural network for shape recognition. Psychological Review 99, 480–517 (1992)

    Article  Google Scholar 

  9. Kohonen, T.: The Self–Organizing Map. Proceedings of the IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  10. Leonardis, A., Jaklic, A., Solina, F.: Superquadrics for Segmenting and Modeling Range Data. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(11), 1289–1295 (1997)

    Article  Google Scholar 

  11. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathematics II(2), 164–168 (1944)

    MATH  MathSciNet  Google Scholar 

  12. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Le Cam, L.M., Neyman, J. (eds.) Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  13. Marquardt, D.W.: An algorithm for least-squares estimation of non-linear parameters. Journal of the Society of Industrial and Applied Mathematics 11(2), 431–441 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  14. Marr, D.: Vision. W.H. Freeman & Co, New York (1982)

    Google Scholar 

  15. Møller, M.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6(4), 525–533 (1993)

    Article  Google Scholar 

  16. Paul, R.: Robot Manipulators. MIT Press, Cambridge (1981)

    Google Scholar 

  17. Pentland, A.P.: Perceptual organization and the representation of natural forms. Artificial Intelligence 28, 293–331 (1986)

    Article  MathSciNet  Google Scholar 

  18. Pentland, A.P.: Recognition by Parts. In: Proc. of International Conference on Computer Vision, London, pp. 612–620 (1987)

    Google Scholar 

  19. Pirrone, R.: Part based Segmentation and Modeling of Range Data by Moving Target. Journal of Intelligent Systems 11(4), 217–247 (2001)

    Google Scholar 

  20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning ingternal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L., PDP Research Group (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Foundations, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  21. Solina, F., Bajcsy, R.: Recovery of parametric models from range images: The case for superquadrics with global deformations. IEEE Trans. on Pattern Analysis and Machine Intelligence 12(2), 131–147 (1990)

    Article  Google Scholar 

  22. Ullman, S.: High-level Vision: Object Recognition and Visual Cognition. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  23. Ullman, S., Basri, R.: Recognition by linear combinations of models. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 992–1006 (1991)

    Article  Google Scholar 

  24. Whaite, P., Ferrie, F.P.: From Uncertainty to Visual Exploration. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(10), 1038–1049 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pirrone, R., Chella, A. (2003). A Neural Architecture for Segmentation and Modelling of Range Data. In: Cappelli, A., Turini, F. (eds) AI*IA 2003: Advances in Artificial Intelligence. AI*IA 2003. Lecture Notes in Computer Science(), vol 2829. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39853-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39853-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20119-9

  • Online ISBN: 978-3-540-39853-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics