New Algorithm for the Simplified Partial Digest Problem

  • J. Błażewicz
  • M. Jaroszewski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2812)


In the paper, the problem of genome mapping is considered. In particular, the restriction site approach is used for this purpose. A new, efficient algorithm for solving the Simplified Partial Digest Problem is presented. The ideal data as well as data with measurement errors can be handled by this algorithm. An extensive computational experiment proved a clear superiority of the presented algorithm over other existing approaches. In addition, a thorough analysis of the Simplified Partial Digest Problem and a discussion of common experimental errors are given.


Feasible Solution Restriction Site Main Element Positive Element Ideal Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alizadeh, F., Karp, R.M., Weisser, D.K., Zweig, G.: Physical mapping of chromosomes using unique end-probes. Journal of Computational Biology 2, 159–184 (1995)CrossRefGoogle Scholar
  2. 2.
    Bellon, B.: Construction of restriction maps. Comput. Appl. Biol. Sci. 4, 111–115 (1988)Google Scholar
  3. 3.
    Błażewicz, J., Formanowicz, P., Jaroszewski, M., Kasprzak, M., Markiewicz, W.T.: Construction of DNA restriction maps based on a simplified experiment. Bioinformatics 5, 398–404 (2001)Google Scholar
  4. 4.
    Chang, W.I., Marr, T.: Personal communication to S. Skiena (1992)Google Scholar
  5. 5.
    Cieliebak, M., Eidenbenz, S., Penna, P.: Noisy Data Make the Partial Digest Problem NP-hard. Technical Report 381, ETH Zurich, Department of Computer Science (2002)Google Scholar
  6. 6.
    Dix, T.I., Kieronska, D.H.: Errors between sites in restriction site mapping. Comput. Appl. Biol. Sci. 4, 117–123 (1988)Google Scholar
  7. 7.
  8. 8.
    Goldstein, L., Waterman, M.S.: Mapping DNA by stochastic relaxation. Adv. Appl. Math. 8, 194–207 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Grigorjev, A.V., Mironov, A.A.: Mapping DNA by stochastic relaxation: a new approach to fragment sizes. Comput. Appl. Biol. Sci. 6, 107–111 (1990)Google Scholar
  10. 10.
    Pevzner, P.A.: Physical mapping and alternating eulerian cycles in colored graphs. Algorithmica 13, 77–105 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rosenblatt, J., Seymour, P.: The structure of homeometric sets. SIAM J. Alg. Disc. Math. 3, 343–350 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Schmitt, W., Waterman, M.S.: Multiple solutions of DNA restriction mapping problem. Adv. Appl. Math. 12, 412–427 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Setubal, J., Meidanis, J.: Introduction to Computational Biology. PWS Publishing Company, Boston (1997)Google Scholar
  14. 14.
    Skiena, S.S., Smith, W.D., Lemke, P.: Reconstructing sets from interpoint distances. In: Proc. Sixth ACM Symp. Computational Geometry, pp. 332–339 (1990)Google Scholar
  15. 15.
    Skiena, S.S., Sundaram, G.: A partial digest approach to restriction site mapping. Bulletin of Mathematical Biology 56(2), 275–294 (1994)zbMATHGoogle Scholar
  16. 16.
    Waterman, M.S.: Introduction to Computational Biology. Maps, Sequences and Genomes. Chapman & Hall, London (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • J. Błażewicz
    • 1
    • 2
  • M. Jaroszewski
    • 1
    • 2
  1. 1.Insitute of Computing SciencePoznań University of TechnologyPoznańPoland
  2. 2.Institute of Bioorganic ChemistryPolish Academy of SciencesPoznańPoland

Personalised recommendations