Selecting Degenerate Multiplex PCR Primers

  • Richard Souvenir
  • Jeremy Buhler
  • Gary Stormo
  • Weixiong Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2812)


Single Nucleotide Polymorphism (SNP) Genotyping is an important molecular genetics technique in the early stages of producing results that will be useful in the medical field. One of the proposed methods for performing SNP Genotyping requires amplifying regions of DNA surrounding a large number of SNP loci. In order to automate a portion of this method and make the use of SNP Genotyping more widespread, it is important to select a set of primers for the experiment. Selecting these primers can be formulated as the Multiple Degenerate Primer Design (MDPD) problem. An iterative beam-search algorithm, Multiple, Iterative Primer Selector (MIPS), is presented for MDPD. Theoretical and experimental analyses show that this algorithm performs well compared to the limits of degenerate primer design and the number of spurious amplifications should be small. Furthermore, MIPS outperforms an existing algorithm which was designed for a related degenerate primer selection problem.

An implementation of the MIPS algorithm is available for research purposes from the website .


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bisiani, R.: Search, beam. In: Shapiro, S.C. (ed.) Encyclopedia of Artificial Intelligence, 2nd edn., pp. 1467–1468. Wiley Interscience, New York (1992)Google Scholar
  2. 2.
    Collins, F., McKusick, V.: Implications of the human genome project for medical science. JAMA 285, 2447–2448 (2001)CrossRefGoogle Scholar
  3. 3.
    Doi, K., Imai, H.: A greedy algorithm for minimizing the number of primers in multiple pcr experiments. In: Genome Informatics, pp. 73–82 (1999)Google Scholar
  4. 4.
    Doi, K., Imai, H.: Complexity properties of the primer selection problem for pcr experiments. In: Proceedings of the 5th Japan-Korea Joint Workshop on Algorithms and Computation, pp. 152–159 (2000)Google Scholar
  5. 5.
    Gabriel, S., Schaffner, S., Nguyen, H., Moore, J., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E., Daly, M., Altshuler, D.: The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002)CrossRefGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  7. 7.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. ch. 15, p. 377. Press Syndicate of the University of Cambridge, Cambridge (1997)zbMATHCrossRefGoogle Scholar
  8. 8.
    Hertz, G., Stormo, G.: Identifying dna and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15, 563–577 (1999)CrossRefGoogle Scholar
  9. 9.
    Kwok, P.: Methods for genotyping single nucleotide polymorphisms. Annu. Rev. Genomics Human Genetics 2, 235–258 (2001)CrossRefGoogle Scholar
  10. 10.
    Kwok, S., Chang, S., Sninsky, J., Wang, A.: A guide to the design and use of mismatched and degenerate primers. PCR Methods and Appl. 3, S39–S47 (1994)Google Scholar
  11. 11.
    Linhart, C., Shamir, R.: The degenerate primer design problem. Bioinformatics 18(Suppl. 1), S172–S180 (2002)Google Scholar
  12. 12.
    Marth, G., Yeh, R., Minton, M., Donaldson, R., Li, Q., Duan, S., Davenport, R., Miller, R., Kwok, P.: Single-nucleotide polymorphisms in the public domain: how useful are they? Nature Genetics 27 (2001)Google Scholar
  13. 13.
    Nicodeme, P., Steyaert, J.-M.: Selecting optimal oligonucleotide primers for multiplex PCR. In: Proceedings of Fifth Conference on Intelligent Systems for Molecular Biology ISMB 1997, pp. 210–213 (1997)Google Scholar
  14. 14.
    Pearson, W., Robins, G., Wrege, D., Zhang, T.: A new approach to primer selection problem in polymerase chain reaction experiments. In: Third International Conference on Intelligent Systems for Molecular Biology, pp. 285–291. AAAI Press, Menlo Park (1995)Google Scholar
  15. 15.
    Pearson, W., Robins, G., Wrege, D., Zhang, T.: On the primer selection problem in polymerase chain reaction experiments. Discrete Applied Mathematics 71 (1996)Google Scholar
  16. 16.
    Waterman, M.S.: Introduction to Computational Biology. Chapman & Hall, Boca Raton (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Richard Souvenir
    • 1
  • Jeremy Buhler
    • 1
    • 2
  • Gary Stormo
    • 1
    • 2
  • Weixiong Zhang
    • 1
    • 2
  1. 1.Department of Computer ScienceWashington University in St. LouisSt. LouisUSA
  2. 2.Department of GeneticsWashington University in St. LouisSt. LouisUSA

Personalised recommendations