Homology Modeling of Proteins Using Multiple Models and Consensus Sequence Alignment

  • Jahnavi C. Prasad
  • Michael Silberstein
  • Carlos J. Camacho
  • Sandor Vajda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2812)


Homology modeling predicts the three-dimensional structure of a protein (target), given its sequence, on the basis of sequence similarity to a protein of known structure (template). The main factor determining the accuracy of the model is the alignment of template and target sequences. Two methods are described to improve the reliability of this step. First, multiple alignment are produced, converted into models, and then the structure with the lowest free energy is chosen. The method performs remarkably well for targets for which a good template is available. In the second approach, the alignment is based on the consensus of five popular methods. It provides reliable prediction of the structurally conserved framework region, but the alignment length is reduced. A homology modeling tool combining the two methods is in preparation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marti-Renom, M.A., Stuart, A.C., Fiser, A., Sanchez, R., Melo, F., Sali, A.: Comparative protein structure modeling of genes and genomes. Ann. Rev. Biophys. Biomol. Struct. 29, 291–325 (2000)CrossRefGoogle Scholar
  2. 2.
    Sanchez, R., Sali, A.: Advances in protein-structure comparative modeling. Curr. Opinion in Struct. Biol. 7, 206–214 (1997)CrossRefGoogle Scholar
  3. 3.
    Fiser, A., Sanchez, R., Melo, F., Sali, A.: Comparative protein structure modeling. In: Watanabe, M., Roux, B., MacKerell, A., Becker, O. (eds.) Computational Biochemistry and Biophys, pp. 275–312. Marcel Dekker, New York (2001)Google Scholar
  4. 4.
    Cline, M., Hughey, R., Karplus, K.: Predicting reliable regions in protein sequence alignments. Bioinformatics 18, 306–314 (2000)CrossRefGoogle Scholar
  5. 5.
    Jaroszewski, L., Rychlewski, L., Godzik, A.: Improving the quality of twilight-zone alignments. Protein Science 9, 1487–1496 (2000)CrossRefGoogle Scholar
  6. 6.
    Janardhan, A., Vajda, S.: Selecting near-native conformations in homologymodeling: The role of molecular mechanics and solvation terms. Protein Science 7, 1772–1780 (1997)CrossRefGoogle Scholar
  7. 7.
    Gatchell, D., Dennis, S., Vajda, S.: Discrimination of near-native protein structures from misfolded models by empirical free energy functions. Proteins 41, 518–534 (2000)CrossRefGoogle Scholar
  8. 8.
    Prasad, J.C., Comeau, S.R., Vajda, S., Camacho, C.J.: Consensus alignment for reliable framework prediction in homology modeling. Bioinformatics (in press)Google Scholar
  9. 9.
    Holm, L., Sander, C.: Mapping the protein universe. Science 273, 595–602 (1996)CrossRefGoogle Scholar
  10. 10.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res. 25, 3389–3402 (1997)CrossRefGoogle Scholar
  11. 11.
    Sanchez, R., Sali, A.: Evaluation of comparative protein structure modeling by MODELLER-3. PROTEINS: Structure, Function and Genetics, (Suppl. 1), 50–58 (1997)Google Scholar
  12. 12.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comp. Chem. 4, 187–217 (1983)CrossRefGoogle Scholar
  13. 13.
    Eisenberg, D., McLachlan, A.D.: Solvation energy in protein folding and binding. Nature 319, 199–203 (1986)CrossRefGoogle Scholar
  14. 14.
    Karplus, K., Barrett, C., Hughey, R.: Hidden Markov models for detecting remote protein homologies. Bioinformatics 14, 846–856 (1998)CrossRefGoogle Scholar
  15. 15.
    Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14, 755–763 (2001)CrossRefGoogle Scholar
  16. 16.
    Cuff, J.A., Barton, G.J.: Application of enhanced multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40, 502–511 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jahnavi C. Prasad
    • 1
  • Michael Silberstein
    • 1
  • Carlos J. Camacho
    • 2
  • Sandor Vajda
    • 2
  1. 1.Program in BioinformaticsBoston UniversityBostonUSA
  2. 2.Department of Biomedical EngineeringBoston UniversityBostonUSA

Personalised recommendations