Efficient Energy Computation for Monte Carlo Simulation of Proteins

  • Itay Lotan
  • Fabian Schwarzer
  • Jean-Claude Latombe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2812)


Monte Carlo simulation (MCS) is a common methodology to compute pathways and thermodynamic properties of proteins. A simulation run is a series of random steps in conformation space, each perturbing some degrees of freedom of the molecule. A step is accepted with a probability that depends on the change in value of an energy function. Typical energy functions sum many terms. The most costly ones to compute are contributed by atom pairs closer than some cutoff distance. This paper introduces a new method that speeds up MCS by efficiently computing the energy at each step. The method exploits the facts that proteins are long kinematic chains and that few degrees of freedom are changed at each step. A novel data structure, called the ChainTree, captures both the kinematics and the shape of a protein at successive levels of detail. It is used to find all atom pairs contributing to the energy. It also makes it possible to identify partial energy sums left unchanged by a perturbation, thus allowing the energy value to be incrementally updated. Computational tests on four proteins of sizes ranging from 68 to 755 amino acids show that MCS with the ChainTree method is significantly faster (as much as 12 times faster for the largest protein) than with the widely used grid method. They also indicate that speed-up increases with larger proteins.


Monte Carlo Simulation Monte Carlo Simulation Energy Computation Interact Pair Kinematic Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binder, K., Heerman, D.: Monte Carlo Simulation in Statistical Physics, 2nd edn. Springer, Berlin (1992)zbMATHGoogle Scholar
  2. 2.
    Hansmann, U.: Parallel tempering algorithm for conformational studies of biological molecules. Chemical Physics Letters 281, 140–150 (1997)CrossRefGoogle Scholar
  3. 3.
    Lee, J.: New Monte Carlo algorithm: entropic sampling. Physical Review Letters 71, 211–214 (1993)CrossRefGoogle Scholar
  4. 4.
    Zhang, Y., Kihara, D., Skolnick, J.: Local energy landscape flattening: Parallel hyperbolic Monte Carlo sampling of protein folding. Proteins 48, 192–201 (2002)CrossRefGoogle Scholar
  5. 5.
    Shimada, J., Kussell, E., Shakhnovich, E.: The folding thermodynamics and kinetics of crambin using an all-atom Monte Carlo simulation. J. Mol. Bio. 308, 79–95 (2001)CrossRefGoogle Scholar
  6. 6.
    Shimada, J., Shakhnovich, E.: The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation. Proc. Natl. Acad. Sci. 99, 11175–11180 (2002)CrossRefGoogle Scholar
  7. 7.
    Abagyan, R., Totrov, M.: Biased probability Monte Carlo conformational seraches and electrostatic calculations for peptides and proteins. J. Mol. Bio. 235, 983–1002 (1994)CrossRefGoogle Scholar
  8. 8.
    Abagyan, R., Totrov, M.: Ab initio folding of peptides by the optimal-bias Monte Carlo minimization procedure. J. of Computational Physics 151, 402–421 (1999)zbMATHCrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Skolnick, J.: Parallel-hat tempering: A Monte Carlo search scheme for the identification of low-energy structures. J. Chem. Phys. 115, 5027–5032 (2001)CrossRefGoogle Scholar
  10. 10.
    Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chem Phys 21, 1087–1092 (1953)CrossRefGoogle Scholar
  11. 11.
    Hansmann, H., Okamoto, Y.: New Monte Carlo algorithms for protein folding. Current Opinion in Structural Biology 9, 177–183 (1999)CrossRefGoogle Scholar
  12. 12.
    Li, Z., Scheraga, H.: Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. National Academy of Science 84, 6611–6615 (1987)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Grosberg, A., Khokhlov, A.: Statistical physics of macromolecules. AIP Press, New York (1994)Google Scholar
  14. 14.
    Northrup, S., McCammon, J.: Simulation methods for protein-structure fluctuations. Biopolymers 19, 1001–1016 (1980)CrossRefGoogle Scholar
  15. 15.
    Abagyan, R., Argos, P.: Optimal protocol and trajectory visualization for conformational searches of peptides and proteins. J. Mol. Bio. 225, 519–532 (1992)CrossRefGoogle Scholar
  16. 16.
    Kikuchi, T.: Inter-Ca atomic potentials derived from the statistics of average interresidue distances in proteins: Application to bovine pancreatic trypsin inhibitor. J. of Comp. Chem. 17, 226–237 (1996)CrossRefGoogle Scholar
  17. 17.
    Kussell, E., Shimada, J., Shakhnovich, E.: A structure-based method for derivation of all-atom potentials for protein folding. Proc. Natl. Acad. Sci. 99, 5343–5348 (2002)CrossRefGoogle Scholar
  18. 18.
    Gō, N., Abe, H.: Noninteracting local-structure model of folding and unfloding transition in globular proteins. Biopolymers 20, 991–1011 (1981)CrossRefGoogle Scholar
  19. 19.
    Lazaridis, T., Karplus, M.: Effective energy function for proteins in solution. Proteins 35, 133–152 (1999)CrossRefGoogle Scholar
  20. 20.
    Leach, A.: Molecular Modelling: Principles and Applications, Longman, Essex, England (1996)Google Scholar
  21. 21.
    Sun, S., Thomas, P., Dill, K.: A simple protein folding algorithm using a binary code and secondary structure constraints. Protein Engineering 8, 769–778 (1995)CrossRefGoogle Scholar
  22. 22.
    Halperin, D., Overmars, M.H.: Spheres, molecules and hidden surface removal. Comp. Geom.: Theory and App. 11, 83–102 (1998)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Lotan, I., Schwarzer, F., Halperin, D., Latombe, J.C.: Efficient maintenance and self-collision testing for kinematic chains. In: Symp. Comp. Geo., pp. 43–52 (2002)Google Scholar
  24. 24.
    Thompson, S.: Use of neighbor lists in molecular dynamics. Information Quaterly, CCP5 8, 20–28 (1983)Google Scholar
  25. 25.
    Mezei, M.: A near-neighbor algorithm for metropolis Monte Carlo simulation. Molecular Simulations 1, 169–171 (1988)CrossRefGoogle Scholar
  26. 26.
    Brown, J., Sorkin, S., Latombe, J.C., Montgomery, K., Stephanides, M.: Algorithmic tools for real time microsurgery simulation. Med. Im. Ana. 6, 289–300 (2002)CrossRefGoogle Scholar
  27. 27.
    Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for rapid interference detection. Comp. Graphics 30, 171–180 (1996)Google Scholar
  28. 28.
    Klosowski, J.T., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Tr. on Visualization and Comp. Graphics 4, 21–36 (1998)CrossRefGoogle Scholar
  29. 29.
    Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast distance queries with rectangular swept sphere volumes. In: IEEE Conf. on Rob. and Auto. (2000)Google Scholar
  30. 30.
    Quinlan, S.: Efficient distance computation between non-convex objects. In: IEEE Intern. Conf. on Rob. and Auto., pp. 3324–3329 (1994)Google Scholar
  31. 31.
    van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. J. of Graphics Tools 2, 1–13 (1997)zbMATHGoogle Scholar
  32. 32.
    Guibas, L.J., Nguyen, A., Russel, D., Zhang, L.: Deforming necklaces. In: Symp. Comp. Geo., pp. 33–42 (2002)Google Scholar
  33. 33.
    Creighton, T.E.: Proteins: Structures and Molecular Properties, 2nd edn. W. H. Freeman and Company, New York (1993)Google Scholar
  34. 34.
    Hubbard, P.M.: Approximating polyhedra with spheres for time-critical collision detection. ACM Tr. on Graphics 15, 179–210 (1996)CrossRefGoogle Scholar
  35. 35.
    Brooks, B., Bruccoleri, R., Olafson, B., States, D., Swaminathan, S., Karplus, M.: CHARMM: a program for macromolecular energy minimizationand dynamics calculations. J. of Computational Chemistry 4, 187–217 (1983)CrossRefGoogle Scholar
  36. 36.
    Lazaridis, T., Karplus, M.: Discrimination of the native from misfolded protein models with an energy funbction including implicit solvation. J. Mol. Bio. 288, 477–487 (1998)CrossRefGoogle Scholar
  37. 37.
    Elofsson, A., LeGrand, S., Eisenberg, D.: Local moves, an efficient method for protein folding simulations. Proteins 23, 73–82 (1995)CrossRefGoogle Scholar
  38. 38.
    Simons, K., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structure from fragments with similar local sequences using simulated annealing and bayesian scoring functions. J. Mol. Bio. 268, 209–225 (1997)CrossRefGoogle Scholar
  39. 39.
    Pangali, C., Rao, M., Berne, B.J.: On a novel Monte Carlo scheme for simulating water and aqueous solutions. Chemical Physics Letters 55, 413–417 (1978)CrossRefGoogle Scholar
  40. 40.
    Kidera, A.: Smart Monte Carlo simulation of a globular protein. Int. J. of Quantum Chemistry 75, 207–214 (1999)CrossRefGoogle Scholar
  41. 41.
    Pedersen, J., Moult, J.: Protein folding simulations with genetic algorithms and a detailed molecular description. J. Mol. Bio. 269, 240–259 (1997)CrossRefGoogle Scholar
  42. 42.
    Sun, S.: Reduced representation model of protein structure prediction: statistical potential and genetic algorithms. Protein Science 2, 762–785 (1993)CrossRefGoogle Scholar
  43. 43.
    Unger, R., Moult, J.: Genetic algorithm for protein folding simulations. J. Mol. Bio. 231, 75–81 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Itay Lotan
    • 1
  • Fabian Schwarzer
    • 1
  • Jean-Claude Latombe
    • 1
  1. 1.Dept. of Computer ScienceStanford UniversityStanfordUSA

Personalised recommendations