A Linear-Time Majority Tree Algorithm

  • Nina Amenta
  • Frederick Clarke
  • Katherine St. John
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2812)


We give a randomized linear-time algorithm for computing the majority rule consensus tree. The majority rule tree is widely used for summarizing a set of phylogenetic trees, which is usually a post-processing step in constructing a phylogeny. We are implementing the algorithm as part of an interactive visualization system for exploring distributions of trees, where speed is a serious concern for real-time interaction. The linear running time is achieved by using succinct representation of the subtrees and efficient methods for the final tree reconstruction.


Hash Function Majority Rule Consensus Tree Hash Table Input Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amenta, N., Klingner, J.: Case study: Visualizing sets of evolutionary trees. In: 8th IEEE Symposium on Information Visualization (InfoVis 2002), pp. 71–74 (2002), Software available at
  2. 2.
    Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41, 3–10 (1992)CrossRefGoogle Scholar
  3. 3.
    Bryant, D.: Hunting for trees, building trees and comparing trees: theory and method in phylogenetic analysis. PhD thesis, Dept. of Mathematics, University of Canterbury (1997)Google Scholar
  4. 4.
    Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and Systems Sciences 18(2), 143–154 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  6. 6.
    Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. J. Classification 2(1), 7–28 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Farach, M., Przytycka, T.M., Thorup, M.: On the agreement of many trees. Information Processing Letters 55(6), 297–301 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Felsenstein, J.: Phylip (phylogeny inference package) version 3.6, Distributed by the author. Department of Genetics, University of Washington, Seattle. The consensus tree code is in consense.c and is co-authored by Hisashi Horino, Akiko Fuseki, Sean Lamont and Andrew Keeffe (2002)Google Scholar
  9. 9.
    Huelsenbeck, J.P., Ronquist, F.: MrBayes: Bayesian inference of phylogeny (2001)Google Scholar
  10. 10.
    Maddison, W.P., Maddison, D.R.: Mesquite: a modular system for evolutionary analysis. version 0.992 (2002), Available from
  11. 11.
    Margush, T., McMorris, F.R.: Consensus n-trees. Bulletin of Mathematical Biology 43, 239–244 (1981)zbMATHMathSciNetGoogle Scholar
  12. 12.
    McMorris, F.R., Meronk, D.B., Neumann, D.A.: A view of some consensus methods for trees. In: Numerical Taxonomy: Proceedings of the NATO Advanced Study Institute on Numerical Taxonomy. Springer, Heidelberg (1983)Google Scholar
  13. 13.
    Page, R.D.M.: Modified mincut supertrees. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 537–551. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Ragan, M.A.: Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1, 53–58 (1992)CrossRefGoogle Scholar
  15. 15.
    Sanderson, M.J., Purvis, A., Henze, C.: Phylogenetic supertrees: assembling the trees of life. Trends in Ecology and Evolution 13, 105–109 (1998)CrossRefGoogle Scholar
  16. 16.
    Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Applied Mathematics 105(1-3), 147–158 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Swofford, D.L.: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts (2002)Google Scholar
  18. 18.
    Wareham, H.T.: An efficient algorithm for computing Ml consensus trees, BS honors thesis, CS, Memorial University Newfoundland (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Nina Amenta
    • 1
  • Frederick Clarke
    • 2
  • Katherine St. John
    • 2
    • 3
  1. 1.Computer Science DepartmentUniversity of CaliforniaDavisUSA
  2. 2.Dept. of Mathematics & Computer ScienceLehman College– City University of New York, BronxUSA
  3. 3.Department of Computer ScienceCUNY Graduate CenterNew YorkUSA

Personalised recommendations